def forward(self, x): x = F.relu(self.bn1(self.conv1(x))) x_64 = F.relu(self.bn2(self.conv2(x))) x_128 = F.relu(self.bn3(self.conv3(x_64))) x_256 = F.relu(self.bn4(self.conv4(x_128))) x_64 = torch.squeeze(self.maxpool(x_64)) x_128 = torch.squeeze(self.maxpool(x_128)) x_256 = torch.squeeze(self.maxpool(x_256)) Layers = [x_256,x_128,x_64] x = torch.cat(Layers,1) x = F.relu(self.bn_1(self.fc1(x))) x = F.relu(self.bn_2(self.fc2(x))) x = F.relu(self.bn_3(self.fc3(x))) x = self.fc4(x) return x
时间: 2024-04-28 07:25:05 浏览: 161
这段代码是一个神经网络的前向传播过程。具体来说,它包括了卷积层、批归一化层、池化层和全连接层。输入x经过一系列卷积层和批归一化层的处理,得到了3个不同分辨率的特征图x_256、x_128和x_64。这些特征图经过池化层后,被连接起来,并通过全连接层输出最终的预测结果。整个过程中,激活函数采用的是ReLU函数。
相关问题
将以下代码改成残差卷积网络class EmbeddingOmniglot(nn.Module): ''' In this network the input image is supposed to be 28x28 ''' def __init__(self, args, emb_size): super(EmbeddingOmniglot, self).__init__() self.emb_size = emb_size self.nef = 64 self.args = args # input is 1 x 28 x 28 self.conv1 = nn.Conv2d(1, self.nef, 3, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(self.nef) # state size. (nef) x 14 x 14 self.conv2 = nn.Conv2d(self.nef, self.nef, 3, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(self.nef) # state size. (1.5*ndf) x 7 x 7 self.conv3 = nn.Conv2d(self.nef, self.nef, 3, bias=False) self.bn3 = nn.BatchNorm2d(self.nef) # state size. (2*ndf) x 5 x 5 self.conv4 = nn.Conv2d(self.nef, self.nef, 3, bias=False) self.bn4 = nn.BatchNorm2d(self.nef) # state size. (2*ndf) x 3 x 3 self.fc_last = nn.Linear(3 * 3 * self.nef, self.emb_size, bias=False) self.bn_last = nn.BatchNorm1d(self.emb_size) def forward(self, inputs): e1 = F.max_pool2d(self.bn1(self.conv1(inputs)), 2) x = F.leaky_relu(e1, 0.1, inplace=True) e2 = F.max_pool2d(self.bn2(self.conv2(x)), 2) x = F.leaky_relu(e2, 0.1, inplace=True) e3 = self.bn3(self.conv3(x)) x = F.leaky_relu(e3, 0.1, inplace=True) e4 = self.bn4(self.conv4(x)) x = F.leaky_relu(e4, 0.1, inplace=True) x = x.view(-1, 3 * 3 * self.nef) output = F.leaky_relu(self.bn_last(self.fc_last(x))) return [e1, e2, e3, output]
以下是将代码改写成使用残差卷积网络的示例代码:
```python
class ResidualBlock(nn.Module):
def __init__(self, in_channels, out_channels):
super(ResidualBlock, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(out_channels)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(out_channels)
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out += identity
out = self.relu(out)
return out
class EmbeddingOmniglot(nn.Module):
''' In this network the input image is supposed to be 28x28 '''
def __init__(self, args, emb_size):
super(EmbeddingOmniglot, self).__init__()
self.emb_size = emb_size
self.nef = 64
self.args = args
# input is 1 x 28 x 28
self.conv1 = nn.Conv2d(1, self.nef, 3, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(self.nef)
# state size. (nef) x 14 x 14
self.residual_block1 = ResidualBlock(self.nef, self.nef)
self.residual_block2 = ResidualBlock(self.nef, self.nef)
# state size. (nef) x 14 x 14
self.residual_block3 = ResidualBlock(self.nef, self.nef)
self.residual_block4 = ResidualBlock(self.nef, self.nef)
# state size. (nef) x 14 x 14
# state size. (1.5*ndf) x 7 x 7
self.conv2 = nn.Conv2d(self.nef, self.nef, 3, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(self.nef)
# state size. (2*ndf) x 5 x 5
self.conv3 = nn.Conv2d(self.nef, self.nef, 3, bias=False)
self.bn3 = nn.BatchNorm2d(self.nef)
# state size. (2*ndf) x 3 x 3
self.fc_last = nn.Linear(3 * 3 * self.nef, self.emb_size, bias=False)
self.bn_last = nn.BatchNorm1d(self.emb_size)
def forward(self, inputs):
x = self.conv1(inputs)
x = self.bn1(x)
x = F.relu(x)
x = self.residual_block1(x)
x = self.residual_block2(x)
e1 = F.max_pool2d(x, 2)
x = self.residual_block3(e1)
x = self.residual_block4(x)
e2 = F.max_pool2d(x, 2)
x = self.conv2(e2)
x = self.bn2(x)
x = F.relu(x)
x = self.conv3(x)
x = self.bn3(x)
x = F.relu(x)
x = x.view(-1, 3 * 3 * self.nef)
output = self.fc_last(x)
output = self.bn_last(output)
output = F.relu(output)
return [e1, e2, x, output]
```
这段代码定义了一个使用残差卷积网络的`EmbeddingOmniglot`类。其中`ResidualBlock`类表示残差块。你可以根据需要调整残差块的层数和卷积层的参数。在`forward`方法中,我们使用`ResidualBlock`类创建了残差块,并按照残差连接的方式连接它们。最后,我们对输出进行相应的处理,如最大池化、全连接层和批标准化等。注意,这里的输出顺序与原代码保持一致,但你也可以根据需要进行修改。
更改import torch import torchvision.models as models import torch.nn as nn import torch.nn.functional as F class eca_Resnet50(nn.Module): def __init__(self): super().__init__() self.model = models.resnet50(pretrained=True) self.model.avgpool = nn.AdaptiveAvgPool2d((1,1)) self.model.fc = nn.Linear(2048, 1000) self.eca = ECA_Module(2048, 8) def forward(self, x): x = self.model.conv1(x) x = self.model.bn1(x) x = self.model.relu(x) x = self.model.maxpool(x) x = self.model.layer1(x) x = self.model.layer2(x) x = self.model.layer3(x) x = self.model.layer4(x) x = self.eca(x) x = self.model.avgpool(x) x = torch.flatten(x, 1) x = self.model.fc(x) return x class ECA_Module(nn.Module): def __init__(self, channel, k_size=3): super(ECA_Module, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.conv = nn.Conv1d(1, 1, kernel_size=k_size, padding=(k_size - 1) // 2, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): b, c, _, _ = x.size() y = self.avg_pool(x) y = self.conv(y.squeeze(-1).transpose(-1,-2)).transpose(-1,-2).unsqueeze(-1) y = self.sigmoid(y) return x * y.expand_as(x) class ImageDenoising(nn.Module): def __init__(self): super().__init__() self.model = eca_Resnet50() self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1) self.conv2 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1) self.conv3 = nn.Conv2d(64, 3, kernel_size=3, stride=1, padding=1) def forward(self, x): x = self.conv1(x) x = F.relu(x) x = self.conv2(x) x = F.relu(x) x = self.conv3(x) x = F.relu(x) return x输出为[16,1,50,50]
很好,你已经成功地定义了一个带有 ECA 模块的 ResNet50,以及一个图像去噪模型 ImageDenoising,输出大小为 [16, 1, 50, 50]。在 ImageDenoising 的 forward 函数中,你首先将输入 x 传递给 conv1,然后对其进行 ReLU 激活。接下来,你将其传递给 conv2,并再次进行 ReLU 激活。最后,你将其传递给 conv3,再次进行 ReLU 激活,并返回输出 x。
阅读全文