def forward(self, x): xyz = x.permute(0, 2, 1) batch_size, _, _ = x.size() # B, D, N x = F.relu(self.bn1(self.conv1(x))) # B, D, N x = F.relu(self.bn2(self.conv2(x))) x = x.permute(0, 2, 1) new_xyz, new_feature = sample_and_group(npoint=512, radius=0.15, nsample=32, xyz=xyz, points=x) feature_0 = self.gather_local_0(new_feature) feature = feature_0.permute(0, 2, 1) new_xyz, new_feature = sample_and_group(npoint=256, radius=0.2, nsample=32, xyz=new_xyz, points=feature) feature_1 = self.gather_local_1(new_feature) x = self.pt_last(feature_1) x = torch.cat([x, feature_1], dim=1) x = self.conv_fuse(x) x = F.adaptive_max_pool1d(x, 1).view(batch_size, -1) x = F.leaky_relu(self.bn6(self.linear1(x)), negative_slope=0.2) x = self.dp1(x) x = F.leaky_relu(self.bn7(self.linear2(x)), negative_slope=0.2) x = self.dp2(x) x = self.linear3(x) return x
时间: 2024-01-27 10:04:02 浏览: 145
这段代码是一个PyTorch的神经网络模型的前向传播函数,用于对输入x做推理得到输出结果。该模型为PointNet++,用于处理点云数据。该函数的输入为点云数据x,输出为该点云数据的特征向量表示。具体实现过程中,该模型对点云数据进行了一系列处理,包括对点云数据进行卷积、池化等操作,最终得到点云数据的特征向量表示。
相关问题
import torch import torch.nn as nn class LeNetConvLSTM(nn.Module): def __init__(self, input_size, hidden_size, kernel_size): super(LeNetConvLSTM, self).__init__() # LeNet网络部分 self.conv1 = nn.Conv2d(in_channels=1, out_channels=6, kernel_size=5) self.pool1 = nn.MaxPool2d(kernel_size=2) self.conv2 = nn.Conv2d(in_channels=6, out_channels=16, kernel_size=5) self.pool2 = nn.MaxPool2d(kernel_size=2) self.fc1 = nn.Linear(in_features=16*5*5, out_features=120) self.fc2 = nn.Linear(in_features=120, out_features=84) # ConvLSTM部分 self.lstm = nn.LSTMCell(input_size, hidden_size) self.hidden_size = hidden_size self.kernel_size = kernel_size self.padding = kernel_size // 2 def forward(self, x): # LeNet网络部分 x = self.pool1(torch.relu(self.conv1(x))) x = self.pool2(torch.relu(self.conv2(x))) x = x.view(-1, 16*5*5) x = torch.relu(self.fc1(x)) x = torch.relu(self.fc2(x)) # 将输出转换为ConvLSTM所需的格式 batch_size, channels, height, width = x.shape x = x.view(batch_size, channels, height*width) x = x.permute(0, 2, 1) # ConvLSTM部分 hx = torch.zeros(batch_size, self.hidden_size).to(x.device) cx = torch.zeros(batch_size, self.hidden_size).to(x.device) for i in range(height*width): hx, cx = self.lstm(x[:, i, :], (hx, cx)) hx = hx.view(batch_size, self.hidden_size, 1, 1) cx = cx.view(batch_size, self.hidden_size, 1, 1) if i == 0: output = hx else: output = torch.cat((output, hx), dim=1) # 将输出转换为正常的格式 output = output.permute(0, 2, 3, 1) output = output.view(batch_size, height, width, self.hidden_size) return output
这段代码定义了一个名为 LeNetConvLSTM 的 PyTorch 模型,它实现了一个结合了 LeNet 网络和 ConvLSTM 的神经网络。LeNet 网络用于提取输入数据的特征,ConvLSTM 用于处理时间序列数据。在 forward 方法中,该模型首先通过 LeNet 网络处理输入数据,然后将输出转换为 ConvLSTM 所需的格式,并对每个时间步运行一个 LSTM 单元,最后将 LSTM 单元的输出转换为正常的格式。
class BayarConv2d(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=5, stride=1, padding=0): self.in_channels = in_channels self.out_channels = out_channels self.kernel_size = kernel_size self.stride = stride self.padding = padding self.minus1 = (torch.ones(self.in_channels, self.out_channels, 1) * -1.000) super(BayarConv2d, self).__init__() # only (kernel_size ** 2 - 1) trainable params as the center element is always -1 self.kernel = nn.Parameter(torch.rand(self.in_channels, self.out_channels, kernel_size ** 2 - 1), requires_grad=True) def bayarConstraint(self): self.kernel.data = self.kernel.permute(2, 0, 1) self.kernel.data = torch.div(self.kernel.data, self.kernel.data.sum(0)) self.kernel.data = self.kernel.permute(1, 2, 0) ctr = self.kernel_size ** 2 // 2 real_kernel = torch.cat((self.kernel[:, :, :ctr], self.minus1.to(self.kernel.device), self.kernel[:, :, ctr:]), dim=2) real_kernel = real_kernel.reshape((self.out_channels, self.in_channels, self.kernel_size, self.kernel_size)) return real_kernel def forward(self, x): x = F.conv2d(x, self.bayarConstraint(), stride=self.stride, padding=self.padding) return x这个类最后得到了什么
这个类实现了一个卷积神经网络层,其中使用了贝叶斯方法对卷积核进行约束,使其满足一定的先验分布。
通过类的初始化函数,用户可以指定输入通道数、输出通道数、卷积核大小、卷积步长和填充大小等参数。
在类的初始化函数中,首先通过类的成员变量存储输入通道数、输出通道数、卷积核大小、卷积步长和填充大小等参数。然后,使用 PyTorch 的 nn.Parameter 函数创建一个可训练的卷积核张量 self.kernel。这个张量的大小为 (in_channels, out_channels, kernel_size ** 2 - 1),其中 kernel_size ** 2 - 1 表示卷积核中除去中心位置的参数数量,因为中心位置的参数总是固定为 -1。
在 BayarConv2d 类中,还定义了一个名为 bayarConstraint 的函数,用于对卷积核进行约束。在这个函数中,首先将 self.kernel 的维度转换为 (kernel_size ** 2 - 1, in_channels, out_channels),然后对 self.kernel 的第一个维度进行归一化,使得每个卷积核的参数总和为 1。接着,将 self.kernel 的维度再次转换为 (in_channels, out_channels, kernel_size ** 2 - 1),然后使用 torch.cat() 函数将中心位置的 -1 插入到 self.kernel 的第三个维度的中心位置,得到最终的约束卷积核 real_kernel。最后,将 real_kernel 的维度转换为 (out_channels, in_channels, kernel_size, kernel_size)。
最后,定义了 forward 函数,实现了 BayarConv2d 类的前向传播过程。在 forward 函数中,使用 PyTorch 的 F.conv2d() 函数对输入进行卷积操作,其中卷积核为调用 bayarConstraint 函数得到的约束卷积核 real_kernel。
阅读全文