def forward(self, x): xyz = x.permute(0, 2, 1) batch_size, _, _ = x.size() # B, D, N x = F.relu(self.bn1(self.conv1(x))) # B, D, N x = F.relu(self.bn2(self.conv2(x))) x = x.permute(0, 2, 1) new_xyz, new_feature = sample_and_group(npoint=512, radius=0.15, nsample=32, xyz=xyz, points=x) feature_0 = self.gather_local_0(new_feature) feature = feature_0.permute(0, 2, 1) new_xyz, new_feature = sample_and_group(npoint=256, radius=0.2, nsample=32, xyz=new_xyz, points=feature) feature_1 = self.gather_local_1(new_feature) x = self.pt_last(feature_1) x = torch.cat([x, feature_1], dim=1) x = self.conv_fuse(x) x = F.adaptive_max_pool1d(x, 1).view(batch_size, -1) x = F.leaky_relu(self.bn6(self.linear1(x)), negative_slope=0.2) x = self.dp1(x) x = F.leaky_relu(self.bn7(self.linear2(x)), negative_slope=0.2) x = self.dp2(x) x = self.linear3(x) return x

时间: 2024-01-27 10:04:02 浏览: 145
这段代码是一个PyTorch的神经网络模型的前向传播函数,用于对输入x做推理得到输出结果。该模型为PointNet++,用于处理点云数据。该函数的输入为点云数据x,输出为该点云数据的特征向量表示。具体实现过程中,该模型对点云数据进行了一系列处理,包括对点云数据进行卷积、池化等操作,最终得到点云数据的特征向量表示。
相关问题

import torch import torch.nn as nn class LeNetConvLSTM(nn.Module): def __init__(self, input_size, hidden_size, kernel_size): super(LeNetConvLSTM, self).__init__() # LeNet网络部分 self.conv1 = nn.Conv2d(in_channels=1, out_channels=6, kernel_size=5) self.pool1 = nn.MaxPool2d(kernel_size=2) self.conv2 = nn.Conv2d(in_channels=6, out_channels=16, kernel_size=5) self.pool2 = nn.MaxPool2d(kernel_size=2) self.fc1 = nn.Linear(in_features=16*5*5, out_features=120) self.fc2 = nn.Linear(in_features=120, out_features=84) # ConvLSTM部分 self.lstm = nn.LSTMCell(input_size, hidden_size) self.hidden_size = hidden_size self.kernel_size = kernel_size self.padding = kernel_size // 2 def forward(self, x): # LeNet网络部分 x = self.pool1(torch.relu(self.conv1(x))) x = self.pool2(torch.relu(self.conv2(x))) x = x.view(-1, 16*5*5) x = torch.relu(self.fc1(x)) x = torch.relu(self.fc2(x)) # 将输出转换为ConvLSTM所需的格式 batch_size, channels, height, width = x.shape x = x.view(batch_size, channels, height*width) x = x.permute(0, 2, 1) # ConvLSTM部分 hx = torch.zeros(batch_size, self.hidden_size).to(x.device) cx = torch.zeros(batch_size, self.hidden_size).to(x.device) for i in range(height*width): hx, cx = self.lstm(x[:, i, :], (hx, cx)) hx = hx.view(batch_size, self.hidden_size, 1, 1) cx = cx.view(batch_size, self.hidden_size, 1, 1) if i == 0: output = hx else: output = torch.cat((output, hx), dim=1) # 将输出转换为正常的格式 output = output.permute(0, 2, 3, 1) output = output.view(batch_size, height, width, self.hidden_size) return output

这段代码定义了一个名为 LeNetConvLSTM 的 PyTorch 模型,它实现了一个结合了 LeNet 网络和 ConvLSTM 的神经网络。LeNet 网络用于提取输入数据的特征,ConvLSTM 用于处理时间序列数据。在 forward 方法中,该模型首先通过 LeNet 网络处理输入数据,然后将输出转换为 ConvLSTM 所需的格式,并对每个时间步运行一个 LSTM 单元,最后将 LSTM 单元的输出转换为正常的格式。

class BayarConv2d(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=5, stride=1, padding=0): self.in_channels = in_channels self.out_channels = out_channels self.kernel_size = kernel_size self.stride = stride self.padding = padding self.minus1 = (torch.ones(self.in_channels, self.out_channels, 1) * -1.000) super(BayarConv2d, self).__init__() # only (kernel_size ** 2 - 1) trainable params as the center element is always -1 self.kernel = nn.Parameter(torch.rand(self.in_channels, self.out_channels, kernel_size ** 2 - 1), requires_grad=True) def bayarConstraint(self): self.kernel.data = self.kernel.permute(2, 0, 1) self.kernel.data = torch.div(self.kernel.data, self.kernel.data.sum(0)) self.kernel.data = self.kernel.permute(1, 2, 0) ctr = self.kernel_size ** 2 // 2 real_kernel = torch.cat((self.kernel[:, :, :ctr], self.minus1.to(self.kernel.device), self.kernel[:, :, ctr:]), dim=2) real_kernel = real_kernel.reshape((self.out_channels, self.in_channels, self.kernel_size, self.kernel_size)) return real_kernel def forward(self, x): x = F.conv2d(x, self.bayarConstraint(), stride=self.stride, padding=self.padding) return x这个类最后得到了什么

这个类实现了一个卷积神经网络层,其中使用了贝叶斯方法对卷积核进行约束,使其满足一定的先验分布。 通过类的初始化函数,用户可以指定输入通道数、输出通道数、卷积核大小、卷积步长和填充大小等参数。 在类的初始化函数中,首先通过类的成员变量存储输入通道数、输出通道数、卷积核大小、卷积步长和填充大小等参数。然后,使用 PyTorch 的 nn.Parameter 函数创建一个可训练的卷积核张量 self.kernel。这个张量的大小为 (in_channels, out_channels, kernel_size ** 2 - 1),其中 kernel_size ** 2 - 1 表示卷积核中除去中心位置的参数数量,因为中心位置的参数总是固定为 -1。 在 BayarConv2d 类中,还定义了一个名为 bayarConstraint 的函数,用于对卷积核进行约束。在这个函数中,首先将 self.kernel 的维度转换为 (kernel_size ** 2 - 1, in_channels, out_channels),然后对 self.kernel 的第一个维度进行归一化,使得每个卷积核的参数总和为 1。接着,将 self.kernel 的维度再次转换为 (in_channels, out_channels, kernel_size ** 2 - 1),然后使用 torch.cat() 函数将中心位置的 -1 插入到 self.kernel 的第三个维度的中心位置,得到最终的约束卷积核 real_kernel。最后,将 real_kernel 的维度转换为 (out_channels, in_channels, kernel_size, kernel_size)。 最后,定义了 forward 函数,实现了 BayarConv2d 类的前向传播过程。在 forward 函数中,使用 PyTorch 的 F.conv2d() 函数对输入进行卷积操作,其中卷积核为调用 bayarConstraint 函数得到的约束卷积核 real_kernel。
阅读全文

相关推荐

def init(self, dim, num_heads, kernel_size=3, padding=1, stride=1, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.): super().init() head_dim = dim // num_heads self.num_heads = num_heads self.kernel_size = kernel_size self.padding = padding self.stride = stride self.scale = qk_scale or head_dim**-0.5 self.v = nn.Linear(dim, dim, bias=qkv_bias) self.attn = nn.Linear(dim, kernel_size**4 * num_heads) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) self.unfold = nn.Unfold(kernel_size=kernel_size, padding=padding, stride=stride) self.pool = nn.AvgPool2d(kernel_size=stride, stride=stride, ceil_mode=True) def forward(self, x): B, H, W, C = x.shape v = self.v(x).permute(0, 3, 1, 2) h, w = math.ceil(H / self.stride), math.ceil(W / self.stride) v = self.unfold(v).reshape(B, self.num_heads, C // self.num_heads, self.kernel_size * self.kernel_size, h * w).permute(0, 1, 4, 3, 2) # B,H,N,kxk,C/H attn = self.pool(x.permute(0, 3, 1, 2)).permute(0, 2, 3, 1) attn = self.attn(attn).reshape( B, h * w, self.num_heads, self.kernel_size * self.kernel_size, self.kernel_size * self.kernel_size).permute(0, 2, 1, 3, 4) # B,H,N,kxk,kxk attn = attn * self.scale attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).permute(0, 1, 4, 3, 2).reshape( B, C * self.kernel_size * self.kernel_size, h * w) x = F.fold(x, output_size=(H, W), kernel_size=self.kernel_size, padding=self.padding, stride=self.stride) x = self.proj(x.permute(0, 2, 3, 1)) x = self.proj_drop(x) return x

class SelfAttention(nn.Module): def init(self, input_size=1, num_heads=1): super(SelfAttention, self).init() self.num_heads = 1 self.head_size = 1 self.query = nn.Linear(1, 1) self.key = nn.Linear(1, 1) self.value = nn.Linear(1, 1) self.out = nn.Linear(1, 1) def forward(self, inputs): batch_size, seq_len, input_size = inputs.size() # 128 706 1 # Split inputs into num_heads inputs = inputs.view(batch_size, seq_len, self.num_heads, self.head_size) inputs = inputs.permute(0, 2, 1, 3).contiguous() queries = self.query(inputs).view(batch_size, self.num_heads, seq_len, self.head_size) keys = self.key(inputs).view(batch_size, self.num_heads, seq_len, self.head_size) values = self.value(inputs).view(batch_size, self.num_heads, seq_len, self.head_size) # Compute attention scores scores = torch.matmul(queries, keys.permute(0, 1, 3, 2)) scores = scores / (self.head_size ** 0.5) attention = F.softmax(scores, dim=-1) # Apply attention weights to values attention_output = torch.matmul(attention, values) attention_output = attention_output.view(batch_size, seq_len, input_size) # Apply output linear layer output = self.out(attention_output) return output class DenseAttentionLayer(nn.Module): def init(self, input_size, return_alphas=True, name=None, num_heads=1): super(DenseAttentionLayer, self).init() self.return_alphas = return_alphas self.name = name self.num_heads = num_heads # If input comes with a hidden dimension (e.g. 5 features per gene) # print("len(input_size): ",len(input_size)) # 2 if len(input_size) == 3: self.feature_collapse = nn.Linear(input_size[-1], 1) input_size = (input_size[0], input_size[1]) self.attention = SelfAttention(input_size=1, num_heads=1) def forward(self, inputs): print("inputs.shape: ",inputs.shape) # torch.Size([128, 706]) output = self.attention(inputs) if self.return_alphas: alphas = F.softmax(output, dim=1) return torch.mul(inputs, alphas), alphas else: return output 对于上述代码其中numheads=1 headsize=1

class DyCAConv(nn.Module): def __init__(self, inp, oup, kernel_size, stride, reduction=32): super(DyCAConv, self).__init__() self.pool_h = nn.AdaptiveAvgPool2d((None, 1)) self.pool_w = nn.AdaptiveAvgPool2d((1, None)) self.pool_h1 = nn.MaxPool2d((None, 1)) self.pool_w1 = nn.MaxPool2d((1, None)) mip = max(8, inp // reduction) self.conv1 = nn.Conv2d(inp, mip, kernel_size=1, stride=1, padding=0) self.bn1 = nn.BatchNorm2d(mip) self.act = h_swish() self.conv_h = nn.Conv2d(mip, inp, kernel_size=1, stride=1, padding=0) self.conv_w = nn.Conv2d(mip, inp, kernel_size=1, stride=1, padding=0) self.conv = nn.Sequential(nn.Conv2d(inp, oup, kernel_size, padding=kernel_size // 2, stride=stride), nn.BatchNorm2d(oup), nn.SiLU()) self.dynamic_weight_fc = nn.Sequential( nn.Linear(inp, 2), nn.Softmax(dim=1) ) def forward(self, x): identity = x n, c, h, w = x.size() x_h = self.pool_h(x) x_w = self.pool_w(x).permute(0, 1, 3, 2) x_h1 = self.pool_h1(x) x_w1 = self.pool_w1(x).permute(0, 1, 3, 2) y = torch.cat([x_h, x_w, x_h1, x_w1], dim=2) y = self.conv1(y) y = self.bn1(y) y = self.act(y) x_h, x_w, _, _ = torch.split(y, [h, w, h, w], dim=2) x_w = x_w.permute(0, 1, 3, 2) x_w1 = x_w1.permute(0, 1, 3, 2) a_h = self.conv_h(x_h).sigmoid() a_w = self.conv_w(x_w).sigmoid() a_w1 = self.conv_w(x_w1).sigmoid() # Compute dynamic weights x_avg_pool = nn.AdaptiveAvgPool2d(1)(x) x_avg_pool = x_avg_pool.view(x.size(0), -1) dynamic_weights = self.dynamic_weight_fc(x_avg_pool) out = identity * (dynamic_weights[:, 0].view(-1, 1, 1, 1) * a_w + dynamic_weights[:, 1].view(-1, 1, 1, 1) * a_h + dynamic_weights[:, 1].view(-1, 1, 1, 1) * a_w1) return self.conv(out)在里面修改一下,换成这个y = torch.cat([x_h+x_h1, x_w+x_w1], dim=2)

最新推荐

recommend-type

免费的防止锁屏小软件,可用于域统一管控下的锁屏机制

免费的防止锁屏小软件,可用于域统一管控下的锁屏机制
recommend-type

Python代码实现带装饰的圣诞树控制台输出

内容概要:本文介绍了一段简单的Python代码,用于在控制台中输出一棵带有装饰的圣诞树。具体介绍了代码结构与逻辑,包括如何计算并输出树形的各层,如何加入装饰元素以及打印树干。还提供了示例装饰字典,允许用户自定义圣诞树装饰位置。 适用人群:所有对Python编程有一定了解的程序员,尤其是想要学习控制台图形输出的开发者。 使用场景及目标:适用于想要掌握如何使用Python代码创建控制台艺术,特别是对于想要增加节日氛围的小项目。目标是帮助开发者理解和实现基本的字符串操作与格式化技巧,同时享受创造乐趣。 其他说明:本示例不仅有助于初学者理解基本的字符串处理和循环机制,而且还能激发学习者的编程兴趣,通过调整装饰物的位置和树的大小,可以让输出更加个性化和丰富。
recommend-type

白色大气风格的设计师作品模板下载.zip

白色大气风格的设计师作品模板下载.zip
recommend-type

电商平台开发需求文档.doc

电商平台开发需求文档.doc
recommend-type

RStudio中集成Connections包以优化数据库连接管理

资源摘要信息:"connections:https" ### 标题解释 标题 "connections:https" 直接指向了数据库连接领域中的一个重要概念,即通过HTTP协议(HTTPS为安全版本)来建立与数据库的连接。在IT行业,特别是数据科学与分析、软件开发等领域,建立安全的数据库连接是日常工作的关键环节。此外,标题可能暗示了一个特定的R语言包或软件包,用于通过HTTP/HTTPS协议实现数据库连接。 ### 描述分析 描述中提到的 "connections" 是一个软件包,其主要目标是与R语言的DBI(数据库接口)兼容,并集成到RStudio IDE中。它使得R语言能够连接到数据库,尽管它不直接与RStudio的Connections窗格集成。这表明connections软件包是一个辅助工具,它简化了数据库连接的过程,但并没有改变RStudio的用户界面。 描述还提到connections包能够读取配置,并创建与RStudio的集成。这意味着用户可以在RStudio环境下更加便捷地管理数据库连接。此外,该包提供了将数据库连接和表对象固定为pins的功能,这有助于用户在不同的R会话中持续使用这些资源。 ### 功能介绍 connections包中两个主要的功能是 `connection_open()` 和可能被省略的 `c`。`connection_open()` 函数用于打开数据库连接。它提供了一个替代于 `dbConnect()` 函数的方法,但使用完全相同的参数,增加了自动打开RStudio中的Connections窗格的功能。这样的设计使得用户在使用R语言连接数据库时能有更直观和便捷的操作体验。 ### 安装说明 描述中还提供了安装connections包的命令。用户需要先安装remotes包,然后通过remotes包的`install_github()`函数安装connections包。由于connections包不在CRAN(综合R档案网络)上,所以需要使用GitHub仓库来安装,这也意味着用户将能够访问到该软件包的最新开发版本。 ### 标签解读 标签 "r rstudio pins database-connection connection-pane R" 包含了多个关键词: - "r" 指代R语言,一种广泛用于统计分析和图形表示的编程语言。 - "rstudio" 指代RStudio,一个流行的R语言开发环境。 - "pins" 指代R包pins,它可能与connections包一同使用,用于固定数据库连接和表对象。 - "database-connection" 指代数据库连接,即软件包要解决的核心问题。 - "connection-pane" 指代RStudio IDE中的Connections窗格,connections包旨在与之集成。 - "R" 代表R语言社区或R语言本身。 ### 压缩包文件名称列表分析 文件名称列表 "connections-master" 暗示了一个可能的GitHub仓库名称或文件夹名称。通常 "master" 分支代表了软件包或项目的稳定版或最新版,是大多数用户应该下载和使用的版本。 ### 总结 综上所述,connections包是一个专为R语言和RStudio IDE设计的软件包,旨在简化数据库连接过程并提供与Connections窗格的集成。它允许用户以一种更为方便的方式打开和管理数据库连接,而不直接提供与Connections窗格的集成。connections包通过读取配置文件和固定连接对象,增强了用户体验。安装connections包需通过remotes包从GitHub获取最新开发版本。标签信息显示了connections包与R语言、RStudio、数据库连接以及R社区的紧密联系。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Keil uVision5全面精通指南

# 摘要 Keil uVision5是一个集成开发环境,广泛应用于嵌入式系统的开发。本文从基础入门开始,详细介绍了Keil uVision5的项目管理、配置、编程实践、高级功能及技巧,并通过项目案例分析,深入阐述了其在实际开发中的应用。本篇论文特别注重于项目创建、目标配置、调试环境搭建、性能优化、脚本编程与自动化、高级调试技术,以及通过嵌入式操作系统集成和驱动开发流程的案例分析,展示了Keil uVision5的实用性和高效性。文章还展望了Keil uVision5的未来发展趋势,并提供了社区资源和学习渠道,为读者提供了一个全面掌握Keil uVision5的平台。 # 关键字 Keil u
recommend-type

flink提交给yarn19个全量同步MYsqlCDC的作业,flink的配置参数怎样设置

在Flink中,如果你需要将19个MySQL CDC(Change Data Capture)的全量同步作业提交到YARN上,你需要确保Flink集群和YARN进行了正确的集成,并配置了适当的参数。以下是可能涉及到的一些关键配置: 1. **并行度(Parallelism)**:每个作业的并行度应该设置得足够高,以便充分利用YARN提供的资源。例如,如果你有19个任务,你可以设置总并行度为19或者是一个更大的数,取决于集群规模。 ```yaml parallelism = 19 或者 根据实际资源调整 ``` 2. **YARN资源配置**:Flink通过`yarn.a
recommend-type

PHP博客旅游的探索之旅

资源摘要信息:"博客旅游" 博客旅游是一个以博客形式分享旅行经验和旅游信息的平台。随着互联网技术的发展和普及,博客作为一种个人在线日志的形式,已经成为人们分享生活点滴、专业知识、旅行体验等的重要途径。博客旅游正是结合了博客的个性化分享特点和旅游的探索性,让旅行爱好者可以记录自己的旅游足迹、分享旅游心得、提供目的地推荐和旅游攻略等。 在博客旅游中,旅行者可以是内容的创造者也可以是内容的消费者。作为创造者,旅行者可以通过博客记录下自己的旅行故事、拍摄的照片和视频、体验和评价各种旅游资源,如酒店、餐馆、景点等,还可以分享旅游小贴士、旅行日程规划等实用信息。作为消费者,其他潜在的旅行者可以通过阅读这些博客内容获得灵感、获取旅行建议,为自己的旅行做准备。 在技术层面,博客平台的构建往往涉及到多种编程语言和技术栈,例如本文件中提到的“PHP”。PHP是一种广泛使用的开源服务器端脚本语言,特别适合于网页开发,并可以嵌入到HTML中使用。使用PHP开发的博客旅游平台可以具有动态内容、用户交互和数据库管理等强大的功能。例如,通过PHP可以实现用户注册登录、博客内容的发布与管理、评论互动、图片和视频上传、博客文章的分类与搜索等功能。 开发一个功能完整的博客旅游平台,可能需要使用到以下几种PHP相关的技术和框架: 1. HTML/CSS/JavaScript:前端页面设计和用户交互的基础技术。 2. 数据库管理:如MySQL,用于存储用户信息、博客文章、评论等数据。 3. MVC框架:如Laravel或CodeIgniter,提供了一种组织代码和应用逻辑的结构化方式。 4. 服务器技术:如Apache或Nginx,作为PHP的运行环境。 5. 安全性考虑:需要实现数据加密、输入验证、防止跨站脚本攻击(XSS)等安全措施。 当创建博客旅游平台时,还需要考虑网站的可扩展性、用户体验、移动端适配、搜索引擎优化(SEO)等多方面因素。一个优质的博客旅游平台,不仅能够提供丰富的内容,还应该注重用户体验,包括页面加载速度、界面设计、内容的易于导航等。 此外,博客旅游平台还可以通过整合社交媒体功能,允许用户通过社交媒体账号登录、分享博客内容到社交网络,从而提升平台的互动性和可见度。 综上所述,博客旅游作为一个结合了旅行分享和在线日志的平台,对于旅行者来说,不仅是一个记录和分享旅行体验的地方,也是一个获取旅行信息、学习旅游知识的重要资源。而对于开发者来说,构建这样一个平台需要运用到多种技术和考虑多个技术细节,确保平台的功能性和用户体验。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依