构建一维时序卷积残差网络模型代码并进行训练保存适用于keras包括膨胀卷积和因果卷积
时间: 2024-03-30 09:10:56 浏览: 64
以下是使用Keras构建一维时序卷积残差网络模型,包括膨胀卷积和因果卷积,并进行训练和保存的代码:
```python
from keras.models import Model
from keras.layers import Input, Conv1D, Activation, Dropout, add, Dense
from keras.layers.normalization import BatchNormalization
def residual_block(X, filters, dilation_rate):
# 第一个卷积层
X_shortcut = X
X = Conv1D(filters=filters, kernel_size=1, padding='same')(X)
X = BatchNormalization()(X)
X = Activation('relu')(X)
# 第二个卷积层
X = Conv1D(filters=filters, kernel_size=3, padding='same', dilation_rate=dilation_rate)(X)
X = BatchNormalization()(X)
X = Activation('relu')(X)
# 第三个卷积层
X = Conv1D(filters=filters, kernel_size=1, padding='same')(X)
X = BatchNormalization()(X)
# 建立残差块
X = add([X, X_shortcut])
X = Activation('relu')(X)
return X
def TCN(input_shape, nb_filters, kernel_size, dilations, nb_stacks, nb_classes):
# 输入层
inputs = Input(shape=input_shape)
# 第一个卷积层
X = Conv1D(filters=nb_filters, kernel_size=kernel_size, padding='same')(inputs)
X = BatchNormalization()(X)
X = Activation('relu')(X)
# 残差层
for stack in range(nb_stacks):
for dilation_rate in dilations:
X = residual_block(X, nb_filters, dilation_rate)
# 全局平均池化和分类器
X = Conv1D(filters=nb_classes, kernel_size=1, padding='same')(X)
X = BatchNormalization()(X)
X = Activation('relu')(X)
X = Dropout(0.2)(X)
X = Dense(nb_classes, activation='softmax')(X)
# 创建模型
model = Model(inputs, X)
return model
# 定义超参数
input_shape = (100, 1) # 输入形状
nb_filters = 64 # 过滤器数量
kernel_size = 3 # 卷积核大小
dilations = [2**i for i in range(8)] # 膨胀卷积和因果卷积的空洞大小
nb_stacks = 1 # 残差块堆叠次数
nb_classes = 10 # 分类数
# 创建并编译模型
model = TCN(input_shape, nb_filters, kernel_size, dilations, nb_stacks, nb_classes)
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
# 训练模型
model.fit(X_train, Y_train, validation_data=(X_test, Y_test), batch_size=32, epochs=10)
# 保存模型
model.save('tcn_model.h5')
```
注意,以上代码是一个示例,具体的参数需要根据实际情况调整。
阅读全文