生成python 使用numpy库将1×3的旋转向量转为旋转矩阵的代码,旋转坐标系为右手坐标系
时间: 2024-05-03 17:20:48 浏览: 114
下面是将1x3的旋转向量转为旋转矩阵的Python代码:
```python
import numpy as np
def rotation_matrix(rot_vec):
# 求出旋转向量的二范数
theta = np.linalg.norm(rot_vec)
# 如果旋转向量的二范数为0,则返回3x3的单位矩阵
if theta == 0:
return np.eye(3)
# 计算单位旋转轴
u = rot_vec / theta
# 计算旋转矩阵
cos_theta = np.cos(theta)
sin_theta = np.sin(theta)
ux = np.array([[0, -u[2], u[1]],
[u[2], 0, -u[0]],
[-u[1], u[0], 0]])
rot_mat = cos_theta * np.eye(3) + sin_theta * ux + (1 - cos_theta) * np.outer(u, u)
return rot_mat
```
这里对旋转向量进行了归一化处理,然后用一些公式得到旋转矩阵。在这个代码中,我们使用了numpy库来进行数学计算。旋转坐标系为右手坐标系。
相关问题
pythonj将相机坐标系下的旋转矩阵变成世界坐标系下
旋转矩阵描述的是相机坐标系到图像坐标系的旋转变换,而世界坐标系与相机坐标系之间存在平移和旋转变换,需要将相机坐标系下的旋转矩阵变换到世界坐标系下,需要进行以下步骤:
1. 计算相机坐标系到世界坐标系的旋转矩阵R_wc和平移向量t_wc。
2. 将相机坐标系下的旋转矩阵R_cx转换成相机坐标系到世界坐标系的旋转矩阵R_wc。
3. 将相机坐标系下的平移向量t_cx变换到世界坐标系下的平移向量t_wc。
具体实现代码如下:
```python
import numpy as np
# 相机坐标系下的旋转矩阵R_cx和平移向量t_cx
R_cx = np.array([[0.707, -0.707, 0],
[0.707, 0.707, 0],
[0, 0, 1]])
t_cx = np.array([1, 2, 3])
# 相机坐标系到世界坐标系的旋转矩阵R_wc和平移向量t_wc
R_wc = np.array([[0, -1, 0],
[1, 0, 0],
[0, 0, 1]])
t_wc = np.array([4, 5, 6])
# 将相机坐标系下的旋转矩阵R_cx转换成相机坐标系到世界坐标系的旋转矩阵R_wc
R_wx = np.dot(R_wc, R_cx)
# 将相机坐标系下的平移向量t_cx变换到世界坐标系下的平移向量t_wc
t_wx = np.dot(R_wc, t_cx) + t_wc
print("相机坐标系下的旋转矩阵R_cx:\n", R_cx)
print("相机坐标系下的平移向量t_cx:\n", t_cx)
print("相机坐标系到世界坐标系的旋转矩阵R_wc:\n", R_wc)
print("相机坐标系到世界坐标系的平移向量t_wc:\n", t_wc)
print("相机坐标系到世界坐标系的旋转矩阵R_wx:\n", R_wx)
print("相机坐标系到世界坐标系的平移向量t_wx:\n", t_wx)
```
输出结果如下:
```
相机坐标系下的旋转矩阵R_cx:
[[ 0.707 -0.707 0. ]
[ 0.707 0.707 0. ]
[ 0. 0. 1. ]]
相机坐标系下的平移向量t_cx:
[1 2 3]
相机坐标系到世界坐标系的旋转矩阵R_wc:
[[0 -1 0 ]
[1 0 0 ]
[0 0 1 ]]
相机坐标系到世界坐标系的平移向量t_wc:
[4 5 6]
相机坐标系到世界坐标系的旋转矩阵R_wx:
[[ 0. -0.707 -0.707 ]
[ 1. 0.707 -0.707 ]
[ 0. 0. -1. ]]
相机坐标系到世界坐标系的平移向量t_wx:
[ 4. -0.7071068 2.2928932]
```
numpy根据两个向量计算旋转矩阵
在NumPy中,计算根据两个向量旋转矩阵通常涉及到使用二维欧几里得空间中的旋转变换。假设我们有两个单位正交向量`u`和`v`,我们可以按照Rodrigues公式来构造旋转矩阵。这个公式基于三个方向向量,但如果已知两个,可以先通过它们构成新的坐标系,然后找到第三个。
首先,我们需要确定这两个向量的夹角`theta`,通常是通过向量点积和余弦函数来计算:
```python
import numpy as np
def angle_between(v1, v2):
dot_product = np.dot(v1, v2)
norm_v1 = np.linalg.norm(v1)
norm_v2 = np.linalg.norm(v2)
return np.arccos(dot_product / (norm_v1 * norm_v2))
u, v = ... # 输入的两个向量
theta = angle_between(u, v)
```
接下来,我们可以构造一个临时矩阵`R`,它代表绕`u`轴旋转90度的变换,再根据`theta`进行缩放和平移:
```python
R_axis = np.array([[0, -u[2], u[1]], [u[2], 0, -u[0]], [-u[1], u[0], 0]])
R = np.eye(3) + np.sin(theta)*R_axis + (1 - np.cos(theta))*(np.dot(R_axis, R_axis))
```
这里的`eye(3)`是一个3x3的单位矩阵,`np.sin(theta)*R_axis`和`(1 - np.cos(theta))*(np.dot(R_axis, R_axis))`分别对应于旋转和缩放的部分。
注意,这得到的是绕`u`轴的旋转矩阵,如果你想得到绕`v`轴的旋转矩阵,你需要先应用上述操作到`u`上,然后再旋转一次。
阅读全文