利用GLL积分的谱元法求解这个方程的matlab参考代码
% GLL积分的谱元法求解Poisson方程 clear all; % 设置计算区域和谱元阶数 L = 1; % 区域长度 N = 16; % 谱元阶数 % 生成谱元 [xn,wn] = lglnodes(N); % Legendre-Gauss-Lobatto节点和权重 [xx,yy] = meshgrid(xn,xn); [wx,wy] = meshgrid(wn,wn); wx = wx.*wy; % 构建刚度矩阵和质量矩阵 K = zeros(N^2,N^2); M = zeros(N^2,N^2); for i=1:N for j=1:N for k=1:N for l=1:N id1 = (i-1)*N + j; id2 = (k-1)*N + l; % 计算刚度矩阵 K(id1,id2) = K(id1,id2) + wx(i,j)wx(k,l)((2/L)^2 * (xx(i,j)-xx(k,l))^2 + (2/L)^2 * (yy(i,j)-yy(k,l))^2); % 计算质量矩阵 M(id1,id2) = M(id1,id2) + wx(i,j)wx(k,l)((2/L)^2 * xx(k,l) + 1) * ((2/L)^2 * xx(i,j) + 1); end end end end % 构建右端向量 F = zeros(N^2,1); for i=1:N for j=1:N id = (i-1)N + j; if (i==1 || i==N || j==1 || j==N) F(id) = wx(i,j)(-4/L^2); end end end % 边界条件 for i=1:N id1 = (i-1)*N + 1; id2 = (i-1)*N + N; K(id1,:) = 0; K(id1,id1) = 1; F(id1) = 0; K(id2,:) = 0; K(id2,id2) = 1; F(id2) = 0; end for j=1:N id1 = j; id2 = (N-1)*N + j; K(id1,:) = 0; K(id1,id1) = 1; F(id1) = 0; K(id2,:) = 0; K(id2,id2) = 1; F(id2) = 0; end % 求解线性方程组 A = M\K; phi = A\F; % 绘制结果 u = zeros(N+2,N+2); u(2:N+1,2:N+1) = reshape(phi,N,N); x = linspace(0,L,N+2); y = linspace(0,L,N+2); [X,Y] = meshgrid(x,y); surf(X,Y,u'); xlabel('x'); ylabel('y'); zlabel('u');
相关推荐
















