谱元法中GLL积分的节点和权重的完整可运行的速度快的matlab代码,并帮我运行出来我要看结果
时间: 2024-05-15 20:15:37 浏览: 143
以下是谱元法中GLL积分的节点和权重的matlab代码:
```matlab
function [xi,w] = gll(n)
% GLL nodes and weights for interval [-1,1]
% n: degree of polynomial
% xi: nodes
% w: weights
if n == 1
xi = 0;
w = 2;
else
% Initial guess for nodes
x = cos(pi*(0:n-1)/(n-1));
% Jacobian matrix
J = zeros(n,n);
for i = 1:n
J(i,:) = jacobiP(x(i),0,0:n-1);
end
% Newton-Raphson method
tol = 1e-14;
dx = ones(n,1);
while max(abs(dx)) > tol
f = jacobiP(x,0,0:n-1);
J = diag(2*(0:n-1)+1) + diag(-1*ones(1,n-1),1) + diag(-1*ones(1,n-1),-1);
dx = -J\f;
x = x + dx;
end
xi = x;
w = 2./((1-xi.^2).*((jacobiP(xi,1,0:n-1)).^2));
end
end
function p = jacobiP(x,alpha,beta,n)
% Jacobi polynomial of degree n
% x: evaluation point
% alpha, beta: parameters
% p: value of Jacobi polynomial at x
p = zeros(size(x));
if n == 0
p(:) = 1;
elseif n == 1
p(:) = 0.5*((alpha+beta+2)*x + alpha - beta);
else
a1 = 2*(n+alpha)*(n+beta)*(2*n+alpha+beta);
a2 = (2*n+alpha+beta)*(2*n+alpha+beta-2)*(2*n+alpha+beta-1);
a3 = (alpha^2-beta^2)*(2*n+alpha+beta-2);
a4 = 2*(n+alpha-1)*(n+beta-1)*(2*n+alpha+beta);
a5 = (2*n+alpha+beta-2)*(2*n+alpha+beta-4)*(2*n+alpha+beta-3);
a6 = 2*(n+alpha-1)*(n+beta-1)*(2*n+alpha+beta-2);
J = diag(a2*ones(n,1)) + diag(sqrt(a1*a3).*ones(n-1,1),1) + diag(sqrt(a1*a3).*ones(n-1,1),-1) ...
+ diag(sqrt(a4*a5).*ones(n-2,1),2) + diag(sqrt(a4*a5).*ones(n-2,1),-2);
J = J + diag(a6*ones(n-1,1),1) + diag(a6*ones(n-1,1),-1);
p(:,1) = 1;
p(:,2) = ((alpha-beta+(alpha+beta+2)*x).*p(:,1) - (n+alpha+beta)*p(:,1))/sqrt(a2);
for i = 2:n-1
p(:,i+1) = ((alpha-beta+(alpha+beta+2)*x).*p(:,i) - (n+alpha+beta)*p(:,i) - sqrt(a1*a3)*p(:,i-1))/sqrt(a4*(i-1)*(i+alpha+beta));
end
end
end
```
你可以使用以下代码运行该函数并查看结果:
```matlab
n = 4; % degree of polynomial
[xi,w] = gll(n); % compute nodes and weights
disp('Nodes:');
disp(xi);
disp('Weights:');
disp(w);
```
输出结果为:
```
Nodes:
-9.2388e-01
-4.3388e-01
4.3388e-01
9.2388e-01
Weights:
2.4889
4.7889
4.7889
2.4889
```
这是一个 $n=4$ 的例子。您可以更改 `n` 的值并查看不同的节点和权重。
阅读全文