差分进化算法MATLAB
时间: 2023-06-22 12:23:29 浏览: 94
以下是标准差分进化算法的MATLAB代码示例:
```matlab
function [bestSol, bestCost, Convergence_curve] = DE(F, nVar, VarMin, VarMax, MaxIt, NP, F1, F2, CR)
% 参数设置
VarSize = [1 nVar]; % 决策变量大小
nPop = NP; % 种群大小
% 初始化种群
pop = repmat(VarMin, nPop, 1) + rand(nPop, nVar) .* (repmat(VarMax, nPop, 1) - repmat(VarMin, nPop, 1));
costs = zeros(nPop, 1);
for i = 1:nPop
costs(i) = F(pop(i, :));
end
% 优化迭代
bestSol = zeros(VarSize);
bestCost = inf;
Convergence_curve = zeros(MaxIt, 1);
for it = 1:MaxIt
for i = 1:nPop
% 选择个体
A = randperm(nPop);
A(A == i) = [];
r1 = A(1);
r2 = A(2);
r3 = A(3);
% 变异
p = pop(r1, :) + F1 .* (pop(r2, :) - pop(r3, :));
p = max(p, VarMin);
p = min(p, VarMax);
% 交叉
c = rand(VarSize) <= CR;
p(c) = pop(i, c);
% 选择
if F(p) < costs(i)
pop(i, :) = p;
costs(i) = F(p);
end
% 更新全局最优解
if costs(i) < bestCost
bestCost = costs(i);
bestSol = pop(i, :);
end
end
% 记录收敛曲线
Convergence_curve(it) = bestCost;
% 输出迭代信息
fprintf('Iteration %d: Best Cost = %f\n', it, bestCost);
end
end
```
其中,`F`为目标函数句柄,`nVar`为决策变量个数,`VarMin`和`VarMax`为决策变量的上下界,`MaxIt`为最大迭代次数,`NP`为种群大小,`F1`和`F2`为差分进化算法的参数,`CR`为交叉概率。算法输出最优解`bestSol`,最优解对应的目标函数值`bestCost`,以及收敛曲线`Convergence_curve`。
阅读全文