python 编程实现基于属性的访问控制模型ABAC 属性包含主体、客体、环境集合
时间: 2024-01-25 08:04:47 浏览: 157
是的,ABAC(Attribute-Based Access Control)模型是一种基于属性的访问控制模型,它包含主体、客体和环境三个集合,并且可以使用这三个集合中的属性来进行访问控制。在ABAC模型中,访问请求会被映射到主体和客体属性,然后根据这些属性的值来进行访问决策。同时,环境属性也可以被用来影响访问决策。这种模型可以更加灵活地管理访问控制,因为可以根据需要定义不同的属性,从而更好地适应不同的应用场景。
相关问题
python 编程实现基于包含主体、客体、环境集合的访问控制模型ABAC
下面是一个简单的 Python 实现 ABAC 模型的示例:
```python
class Subject:
def __init__(self, name, role=None):
self.name = name
self.role = role
self.attributes = {}
def add_attribute(self, name, value):
self.attributes[name] = value
def get_attribute(self, name):
return self.attributes.get(name)
class Object:
def __init__(self, name, obj_type=None):
self.name = name
self.obj_type = obj_type
self.attributes = {}
def add_attribute(self, name, value):
self.attributes[name] = value
def get_attribute(self, name):
return self.attributes.get(name)
class Environment:
def __init__(self):
self.attributes = {}
def add_attribute(self, name, value):
self.attributes[name] = value
def get_attribute(self, name):
return self.attributes.get(name)
class Policy:
def __init__(self, subject_attr, object_attr, environment_attr, decision):
self.subject_attr = subject_attr
self.object_attr = object_attr
self.environment_attr = environment_attr
self.decision = decision
def evaluate(self, subject, obj, env):
for attr, value in self.subject_attr.items():
if subject.get_attribute(attr) != value:
return False
for attr, value in self.object_attr.items():
if obj.get_attribute(attr) != value:
return False
for attr, value in self.environment_attr.items():
if env.get_attribute(attr) != value:
return False
return self.decision
# 创建主体、客体和环境
subject = Subject("Alice", "admin")
subject.add_attribute("department", "IT")
obj = Object("Server1", "server")
obj.add_attribute("location", "datacenter")
env = Environment()
env.add_attribute("time", "10:00")
# 创建访问策略
policy = Policy({"role": "admin", "department": "IT"}, {"obj_type": "server", "location": "datacenter"}, {"time": "10:00"}, True)
# 进行访问决策
decision = policy.evaluate(subject, obj, env)
print(decision) # 输出 True
```
在这个示例中,我们定义了 Subject、Object 和 Environment 类来分别表示主体、客体和环境,它们都可以包含各种属性。Policy 类表示访问策略,它包含了主体、客体和环境属性的规则以及允许或禁止访问的决策。最后,我们创建了一个访问请求,并使用 Policy 对象来进行访问决策。
利用python编程实现基于属性的访问控制模型ABAC包括:主体S,客体O,环境E,操作O的集合并写入数据库,主体客体环境属性各有10个,每一个策略中主体,客体环境相关的规则由3-5个属性的布尔表达式组成(随机生成),策略个数共有10000个(正授权5000个,负授权5000个)随机生成,随机生成10000进行决策,记录决策结果。策略库是文本数据库,请求也是文本。
好的,我可以帮你回答这个问题。首先,你需要安装 Python 和相关的数据库模块,比如 SQLite3。然后,你可以创建一个 Python 脚本来实现这个基于属性的访问控制模型 ABAC。
以下是代码示例:
```python
import sqlite3
import random
# 定义主体、客体、环境属性
subjects = ['subject1', 'subject2', 'subject3', 'subject4', 'subject5', 'subject6', 'subject7', 'subject8', 'subject9', 'subject10']
objects = ['object1', 'object2', 'object3', 'object4', 'object5', 'object6', 'object7', 'object8', 'object9', 'object10']
environments = ['environment1', 'environment2', 'environment3', 'environment4', 'environment5', 'environment6', 'environment7', 'environment8', 'environment9', 'environment10']
# 定义策略库
policies = []
for i in range(10000):
policy = {}
policy['name'] = 'policy' + str(i)
policy['subject'] = {}
for j in range(random.randint(3, 5)):
attribute = random.choice(subjects)
value = random.choice([True, False])
policy['subject'][attribute] = value
policy['object'] = {}
for j in range(random.randint(3, 5)):
attribute = random.choice(objects)
value = random.choice([True, False])
policy['object'][attribute] = value
policy['environment'] = {}
for j in range(random.randint(3, 5)):
attribute = random.choice(environments)
value = random.choice([True, False])
policy['environment'][attribute] = value
policy['authorized'] = bool(i < 5000)
policies.append(policy)
# 将策略库写入数据库
conn = sqlite3.connect('policies.db')
c = conn.cursor()
c.execute('CREATE TABLE policies (name TEXT, subject TEXT, object TEXT, environment TEXT, authorized INTEGER)')
for policy in policies:
subject = str(policy['subject']).replace("'", '"')
obj = str(policy['object']).replace("'", '"')
env = str(policy['environment']).replace("'", '"')
authorized = 1 if policy['authorized'] else 0
c.execute(f"INSERT INTO policies VALUES ('{policy['name']}', '{subject}', '{obj}', '{env}', {authorized})")
conn.commit()
# 生成请求并进行决策
decisions = []
for i in range(10000):
request = {}
request['subject'] = {}
for j in range(len(subjects)):
request['subject'][subjects[j]] = bool(random.getrandbits(1))
request['object'] = {}
for j in range(len(objects)):
request['object'][objects[j]] = bool(random.getrandbits(1))
request['environment'] = {}
for j in range(len(environments)):
request['environment'][environments[j]] = bool(random.getrandbits(1))
query = "SELECT authorized FROM policies WHERE "
for attribute, value in request['subject'].items():
query += f"subject LIKE '%{attribute}:{value}%' AND "
for attribute, value in request['object'].items():
query += f"object LIKE '%{attribute}:{value}%' AND "
for attribute, value in request['environment'].items():
query += f"environment LIKE '%{attribute}:{value}%' AND "
query = query[:-5]
c.execute(query)
result = c.fetchone()
decision = True if result and result[0] == 1 else False
decisions.append(decision)
# 关闭数据库连接
conn.close()
# 输出决策结果
print(decisions)
```
这段代码会生成一个包含 10000 个请求的列表,其中每个请求都包括主体、客体和环境的属性。然后,它会从策略库中查找与请求匹配的策略,并根据策略中的授权信息做出决策。最后,它会输出一个包含 10000 个决策结果的列表。
请注意,这段代码只是一个示例,你需要根据自己的需求进行修改和完善。同时,你需要在自己的电脑上安装 Python 和 SQLite3,并且创建一个名为 policies.db 的数据库文件。
阅读全文