x = list(range(-T, T+1)) y = [w.count(a) for a in x]

时间: 2024-05-26 10:17:28 浏览: 16
这段代码的作用是统计列表 w 中每个元素在区间 [-T, T] 内出现的次数,并将统计结果存储在列表 y 中。 具体来说,首先创建了一个列表 x,其中包含了从 -T 到 T 的所有整数。然后使用列表推导式计算了列表 y,对于 x 中的每个元素 a,使用 count 方法统计其在列表 w 中出现的次数,并将结果存储在 y 中。最终 y 中的元素顺序与 x 中的元素顺序相同,分别表示 x 中对应元素在 w 中出现的次数。
相关问题

优化这段代码h_now = np.zeros(h) h_list = list(h_now) pix = 0 for y in range(h): for x in range(w): if src[y, x, 1] > 0: pix += 1 h_list[y] = pix

这段代码可以进行一些优化,例如: 1. 使用NumPy的切片操作代替循环遍历像素点,以提高效率。 2. 将列表转换为NumPy数组,并使用NumPy的逻辑运算代替条件判断和累加器,以提高效率。 下面是优化后的代码示例: ```python import numpy as np # 假设src是一个三通道的图像数组,其中绿色通道存储了高度信息 h, w, _ = src.shape # 使用切片操作获取绿色通道的像素值,计算像素总数 pix = np.count_nonzero(src[:, :, 1]) # 将绿色通道的像素值转换为一维数组,统计每行像素数量 h_list = np.sum(src[:, :, 1] > 0, axis=1) # 将一维数组转换为二维数组,以便后续处理 h_list = h_list.reshape((-1, 1)) # 将二维数组转换为浮点数类型,以便进行除法运算 h_list = h_list.astype(np.float32) # 将每行像素数量除以像素总数,得到每行的高度比例 h_list /= pix # 将高度比例数组转换为初始高度数组 h_now = h_list * h ``` 这段代码使用了NumPy的切片操作、逻辑运算和统计函数,以及数组广播和类型转换等技巧,以提高代码执行效率。

用python修改以下代码使其能正确运行:# 定义维特比算法 def viterbi(obs, states, start_p, trans_p, emit_p): V = [{}] path = {} for y in states: V[0][y] = start_p[y] * emit_p[y].get(obs[0], 0) path[y] = [y] for t in range(1, len(obs)): V.append({}) newpath = {} for y in states: (prob, state) = max([(V[t-1][y0] * trans_p[y0].get(y, 0) * emit_p[y].get(obs[t], 0), y0) for y0 in states if V[t-1][y0] > 0]) V[t][y] = prob newpath[y] = path[state] + [y] path = newpath (prob, state) = max([(V[len(obs)-1][y], y) for y in states]) return prob, path[state] # 对测试集进行词性标注并计算准确率 total_count = 0 correct_count = 0 for word, pos in test_words: if word in word_pos_prob.get(pos, {}): obs = [word] states = list(pos_count.keys()) start_p = pos_init_prob trans_p = pos_trans_prob emit_p = word_pos_prob[pos] prob, path = viterbi(obs, states, start_p, trans_p, emit_p) if path[pos][0] == pos: correct_count += 1 total_count += 1 accuracy = correct_count / total_count print('Accuracy: {}'.format(accuracy))

# 定义维特比算法 def viterbi(obs, states, start_p, trans_p, emit_p): V = [{}] path = {} for y in states: V[0][y] = start_p[y] * emit_p[y].get(obs[0], 0) path[y] = [y] for t in range(1, len(obs)): V.append({}) newpath = {} for y in states: (prob, state) = max([(V[t-1][y0] * trans_p[y0].get(y, 0) * emit_p[y].get(obs[t], 0), y0) for y0 in states if V[t-1][y0] > 0]) V[t][y] = prob newpath[y] = path[state] + [y] path = newpath (prob, state) = max([(V[len(obs)-1][y], y) for y in states]) return prob, path[state] # 对测试集进行词性标注并计算准确率 total_count = 0 correct_count = 0 for word, pos in test_words: if word in word_pos_prob.get(pos, {}): obs = [word] states = list(pos_count.keys()) start_p = pos_init_prob trans_p = pos_trans_prob emit_p = word_pos_prob[pos] prob, path = viterbi(obs, states, start_p, trans_p, emit_p) if path[pos][0] == pos: correct_count += 1 total_count += 1 accuracy = correct_count / total_count print('Accuracy: {}'.format(accuracy))

相关推荐

import numpy as np import matplotlib.pyplot as plt import math def count(lis): lis = np.array(lis) key = np.unique(lis) x = [] y = [] for k in key: mask = (lis == k) list_new = lis[mask] v = list_new.size x.append(k) y.append(v) return x, y mu = [14, 23, 22] sigma = [2, 3, 4] tips = ['design', 'build', 'test'] figureIndex = 0 fig = plt.figure(figureIndex, figsize=(10, 8)) color = ['r', 'g', 'b'] ax = fig.add_subplot(111) for i in range(3): x = np.linspace(mu[i] - 3*sigma[i], mu[i] + 3*sigma[i], 100) y_sig = np.exp(-(x - mu[i])**2/(2*sigma[i]**2))/(math.sqrt(2*math.pi)) ax.plot = (x, y_sig, color[i] + '-') ax.legend(loc='best', frameon=False) ax.set_xlabel('# of days') ax.set_ylabel('probability') plt.show() plt.grid(True) size = 100000 samples = [np.random.normal(mu[i], sigma[i], size) for i in range(3)] data = np.zeros(len(samples[1])) for i in range(len(samples[1])): for j in range(3): data[i] += samples[j][i] data[i] = int(data[i]) a, b = count(data) pdf = [x/size for x in b] cdf = np.zeros(len(a)) for i in range(len(a)): if i > 0: cdf[i] += cdf[i - 1] cdf = cdf/size figureIndex += 1 fig = plt.figure(figureIndex, figsize=(10, 8)) ax = fig.add_subplot(211) ax.bar(a, height=pdf, color='blue', edgecolor='white', label='MC PDF') ax.plot(a, pdf) ax.legend(loc='best', frameon=False) ax.set_xlabel('# of days for project') ax.set_ylabel('probability') ax.set_title('Monte Carlo Simulation') ax = fig.add_subplot(212) ax.plot(a, cdf) ax.legend(loc='best', frameon=False) ax.set_xlabel('# of days for project') ax.set_ylabel('probability') ax.grid(True) plt.show()修改一下代码

''''冷夜''' for name,groupmin in df.groupby("年"): # print(name)#1960-2012 groupmin.sort_values(by=['日最低温(0.1℃)'], inplace=True, ascending=False) #ascending=True从-1000到0到1000排列 Lye=groupmin[groupmin["日最低温(0.1℃)"] <groupmin["日最低温(0.1℃)"].quantile(0.1)] #取每年前10% # print( groupmin) b=list(Lye.count()) #年冷夜天数 # print('年冷夜天数:',b) #冬季 groupmin1L_1=Lye[Lye['月']==1] groupmin1L_2=Lye[Lye['月']==2] groupmin1L_12=Lye[Lye['月']==12] aL1=list(groupmin1L_1.count()) aL2=list(groupmin1L_2.count()) aL12=list(groupmin1L_12.count()) # AL=aL1+aL2+aL12 # print(AL) AL=aL1[0]+aL2[0]+aL12[0] # print(AL) #冬季暖夜 array = np.asarray(AL) # print(array) x=array print(x) fig,ax=plt.subplots() y=range(0,36) ax.plot(y,x,'ro-',lw=1,markersize=2,label='line1') plt.show() ,runfile('C:/Users/不想太忙/Desktop/实验1-4_2023年/shiyan11.py', wdir='C:/Users/不想太忙/Desktop/实验1-4_2023年') 37 Traceback (most recent call last): File ~\Desktop\实验1-4_2023年\shiyan11.py:427 ax.plot(y,x,'ro-',lw=1,markersize=2,label='line1') File D:\fanle\lib\site-packages\matplotlib\axes\_axes.py:1743 in plot lines = [*self._get_lines(*args, data=data, **kwargs)] File D:\fanle\lib\site-packages\matplotlib\axes\_base.py:273 in __call__ yield from self._plot_args(this, kwargs) File D:\fanle\lib\site-packages\matplotlib\axes\_base.py:399 in _plot_args raise ValueError(f"x and y must have same first dimension, but " ValueError: x and y must have same first dimension, but have shapes (36,) and (1,)

帮我为下面的代码加上注释:class SimpleDeepForest: def __init__(self, n_layers): self.n_layers = n_layers self.forest_layers = [] def fit(self, X, y): X_train = X for _ in range(self.n_layers): clf = RandomForestClassifier() clf.fit(X_train, y) self.forest_layers.append(clf) X_train = np.concatenate((X_train, clf.predict_proba(X_train)), axis=1) return self def predict(self, X): X_test = X for i in range(self.n_layers): X_test = np.concatenate((X_test, self.forest_layers[i].predict_proba(X_test)), axis=1) return self.forest_layers[-1].predict(X_test[:, :-2]) # 1. 提取序列特征(如:GC-content、序列长度等) def extract_features(fasta_file): features = [] for record in SeqIO.parse(fasta_file, "fasta"): seq = record.seq gc_content = (seq.count("G") + seq.count("C")) / len(seq) seq_len = len(seq) features.append([gc_content, seq_len]) return np.array(features) # 2. 读取相互作用数据并创建数据集 def create_dataset(rna_features, protein_features, label_file): labels = pd.read_csv(label_file, index_col=0) X = [] y = [] for i in range(labels.shape[0]): for j in range(labels.shape[1]): X.append(np.concatenate([rna_features[i], protein_features[j]])) y.append(labels.iloc[i, j]) return np.array(X), np.array(y) # 3. 调用SimpleDeepForest分类器 def optimize_deepforest(X, y): X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) model = SimpleDeepForest(n_layers=3) model.fit(X_train, y_train) y_pred = model.predict(X_test) print(classification_report(y_test, y_pred)) # 4. 主函数 def main(): rna_fasta = "RNA.fasta" protein_fasta = "pro.fasta" label_file = "label.csv" rna_features = extract_features(rna_fasta) protein_features = extract_features(protein_fasta) X, y = create_dataset(rna_features, protein_features, label_file) optimize_deepforest(X, y) if __name__ == "__main__": main()

指出下列代码中哪些是叶子节点import pandas as pd import numpy as np from sklearn.datasets import make_classification def decision_tree_binning(x_value: np.ndarray, y_value: np.ndarray, max_bin=10) -> list: '''利用决策树获得最优分箱的边界值列表''' from sklearn.tree import DecisionTreeClassifier clf = DecisionTreeClassifier( criterion='gini', # 选择“信息熵”或基尼系数 max_leaf_nodes=max_bin, # 最大叶子节点数 min_samples_leaf=0.05) # 叶子节点样本数量最小占比 clf.fit(x_value.reshape(-1, 1), y_value) # 训练决策树 # 绘图 import matplotlib.pyplot as plt from sklearn.tree import plot_tree plt.figure(figsize=(14, 12)) # 指定图片大小 plot_tree(clf) plt.show() # 根据决策树进行分箱 n_nodes = clf.tree_.node_count # 决策树节点 children_left = clf.tree_.children_left children_right = clf.tree_.children_right threshold = clf.tree_.threshold # 开始分箱 boundary = [] for i in range(n_nodes): if children_left[i] != children_right[i]: # 获得决策树节点上的划分边界值 boundary.append(threshold[i]) boundary.sort() min_x = x_value.min() max_x = x_value.max() # max_x = x_value.max() + 0.1 # +0.1是为了考虑后续groupby操作时,能包含特征最大值的样本 boundary = [min_x] + boundary + [max_x] return boundary if __name__ == '__main__': data_x, data_y = make_classification(n_samples=100, n_classes=2, n_features=20, n_informative=2, random_state=None) bin_result = decision_tree_binning(data_x[:, 0], data_y, max_bin=20) bin_value = pd.cut(data_x[:, 0], bin_result).codes # 分箱的结果

1、用自定义模块建立一个Python程序文件。 2、创建一个fibo、py模块,其中包含两个求Fibonacci数列的函数,然后导入该模块并调用其中的函数。 3、例8-10,先定义函数求∑_(i=1)^n▒i^m ,然后调用该函数求s=∑_(k=1)^100▒k+∑_(k=1)^50▒k^2 +∑_(k=1)^10▒1/k。 4、输出宠物的叫声。 5、定义一个函数,实现两个数的四则运算,要注意有3个参数,分别是运算符和两个用于运算的数字。 6、假设设一个简单的ATM机的取款过程是这样的:首先提示用户输入密码(pakaword),最多只能输入3次,超过3次见提示用户"密码错误,请取卡”结束交易。如果用户密码码正确,再提示用户输入金额(amount). ATM机只能输出100元的纸币,一次取钱数要求最低0元,最高1000元。如果用户输入的金额符合上述要求。则打印出用户取的钱数。最后提示用户“交易完成,请取卡”,否则提示用户重新输入金额。假设用户密码是“888888”。 7、编写一个函数,输入n为偶数时 ,调用函数求1/2+1/4+...+1/n,当输入n为奇数时,调用函数 1/1+1/3+...+1/n。 8、斐波那契数列(Fibonacci sequence)指的是这样一个数列:1、1、2、3、5、8、13、21、34、……在数学上,斐波纳契数列以如下被以递归的方法定义:F(0)=0,F(1)=1, F(n)=F(n-1)+F(n-2)(n>=2,n∈N*)。 9、约瑟夫环问题:n个人组成一个环或者排成一个队,从n个人的第一个人每次报数k,然后剔除。 10、输出裴波那契数列。 11、什么叫递归函数?举例说明。 12、什么叫lambda函数?举例说明。

import pandas as pd import numpy as np from sklearn.datasets import make_classification def decision_tree_binning(x_value: np.ndarray, y_value: np.ndarray, max_bin=10) -> list: '''利用决策树获得最优分箱的边界值列表''' from sklearn.tree import DecisionTreeClassifier clf = DecisionTreeClassifier( criterion='', # 选择“信息熵”或基尼系数 max_leaf_nodes=max_bin, # 最大叶子节点数 min_samples_leaf=0.05) # 叶子节点样本数量最小占比 clf.fit(x_value.reshape(-1, 1), y_value) # 训练决策树 # 绘图 import matplotlib.pyplot as plt from sklearn.tree import plot_tree plt.figure(figsize=(14, 12)) # 指定图片大小 plot_tree(clf) plt.show() # 根据决策树进行分箱 n_nodes = clf.tree_.node_count # 决策树节点 children_left = clf.tree_.children_left children_right = clf.tree_.children_right threshold = clf.tree_.threshold # 开始分箱 boundary = [] for i in range(n_nodes): if children_left[i] != children_right[i]: # 获得决策树节点上的划分边界值 boundary.append(threshold[i]) boundary.sort() min_x = x_value.min() max_x = x_value.max() # max_x = x_value.max() + 0.1 # +0.1是为了考虑后续groupby操作时,能包含特征最大值的样本 boundary = [min_x] + boundary + [max_x] return boundary if __name__ == '__main__': data_x, data_y = make_classification(n_samples=, n_classes=, n_features=, n_informative=, random_state=) bin_result = decision_tree_binning(data_x[:, 0], data_y, max_bin=) bin_value = pd.cut(data_x[:, 0], bin_result).codes # 分箱的结果这个代码错在哪

import pandas as pd import matplotlib import numpy as np import matplotlib.pyplot as plt import jieba as jb import re from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.feature_selection import chi2 import numpy as np from sklearn.model_selection import train_test_split from sklearn.feature_extraction.text import CountVectorizer from sklearn.feature_extraction.text import TfidfTransformer from sklearn.naive_bayes import MultinomialNB def sigmoid(x): return 1 / (1 + np.exp(-x)) import numpy as np #定义删除除字母,数字,汉字以外的所有符号的函数 def remove_punctuation(line): line = str(line) if line.strip()=='': return '' rule = re.compile(u"[^a-zA-Z0-9\u4E00-\u9FA5]") line = rule.sub('',line) return line def stopwordslist(filepath): stopwords = [line.strip() for line in open(filepath, 'r', encoding='utf-8').readlines()] return stopwords df = pd.read_csv('./online_shopping_10_cats/online_shopping_10_cats.csv') df=df[['cat','review']] df = df[pd.notnull(df['review'])] d = {'cat':df['cat'].value_counts().index, 'count': df['cat'].value_counts()} df_cat = pd.DataFrame(data=d).reset_index(drop=True) df['cat_id'] = df['cat'].factorize()[0] cat_id_df = df[['cat', 'cat_id']].drop_duplicates().sort_values('cat_id').reset_index(drop=True) cat_to_id = dict(cat_id_df.values) id_to_cat = dict(cat_id_df[['cat_id', 'cat']].values) #加载停用词 stopwords = stopwordslist("./online_shopping_10_cats/chineseStopWords.txt") #删除除字母,数字,汉字以外的所有符号 df['clean_review'] = df['review'].apply(remove_punctuation) #分词,并过滤停用词 df['cut_review'] = df['clean_review'].apply(lambda x: " ".join([w for w in list(jb.cut(x)) if w not in stopwords])) tfidf = TfidfVectorizer(norm='l2', ngram_range=(1, 2)) features = tfidf.fit_transform(df.cut_review) labels = df.cat_id X_train, X_test, y_train, y_test = train_test_split(df['cut_review'], df['cat_id'], random_state = 0) count_vect = CountVectorizer() X_train_counts = count_vect.fit_transform(X_train) tfidf_transformer = TfidfTransformer() X_train_tfidf = tfidf_transformer.fit_transform(X_train_counts) 已经写好以上代码,请补全train和test函数

解释代码:data=pd.read_excel('评论内容.xlsx') a=list(data['评论内容']) # 将所有文本连接成一个字符串 su='' for i in a: su+=str(i) # for l in range(30,300,30) # 进行分词处理 seg = jieba.lcut(su,cut_all=False) # 构建word2vec模型,该模型用于转换词向量 model = word2vec.Word2Vec(seg, min_count=1,vector_size=100) index2word_set = set(model.wv.index_to_key) # 词向量转换函数 def avg_feature_vector(sentence, model, num_features, index2word_set): # 定义词向量数量 feature_vec = np.zeros((num_features, ), dtype='float32') n_words = 0 # 分析句子中每一个词在词库中的情况 for word in str(sentence): word=str(word) if word in index2word_set: n_words += 1 feature_vec = np.add(feature_vec, model.wv[word]) # 进行向量转换 if (n_words > 0): feature_vec = np.divide(feature_vec, n_words) return feature_vec # 将训练集的数据转换为词向量 df=[] for i in range(len(a)): s1_afv = avg_feature_vector(a[i], model=model, num_features=100, index2word_set=index2word_set) df.append(s1_afv) X=pd.DataFrame(df) # 使用nlp为评论设置初始标签 y=[] for i in range(len(a)): # print(i) s = SnowNLP(str(a[i])) if s.sentiments > 0.7: y.append(1) else: y.append(0) y=pd.DataFrame(y) # 将文本转换为onehot向量 def gbdt_lr(X, y): # 构建梯度提升决策树 gbc = GradientBoostingClassifier(n_estimators=20,random_state=2019, subsample=0.8, max_depth=5,min_samples_leaf=1,min_samples_split=6) gbc.fit(X, y) # 连续变量离散化 gbc_leaf = gbc.apply(X) gbc_feats = gbc_leaf.reshape(-1, 20) # 转换为onehot enc = OneHotEncoder() enc.fit(gbc_feats) gbc_new_feature = np.array(enc.transform(gbc_feats).toarray()) # 输出转换结果 print(gbc_new_feature) return gbc_new_feature

最新推荐

recommend-type

Unity3D实现渐变颜色效果

[Range(-1f, 1f)] public float Offset = 0f; public Gradient gradient; #endregion #region 公共方法 public override void ModifyMesh(VertexHelper helper) { if (!IsActive() || helper....
recommend-type

(2024)跳槽涨薪必备精选面试题.pdf

(2024)跳槽涨薪必备精选面试题.pdf (2024)跳槽涨薪必备精选面试题.pdf (2024)跳槽涨薪必备精选面试题.pdf (2024)跳槽涨薪必备精选面试题.pdf (2024)跳槽涨薪必备精选面试题.pdf
recommend-type

VMP技术解析:Handle块优化与壳模板初始化

"这篇学习笔记主要探讨了VMP(Virtual Machine Protect,虚拟机保护)技术在Handle块优化和壳模板初始化方面的应用。作者参考了看雪论坛上的多个资源,包括关于VMP还原、汇编指令的OpCode快速入门以及X86指令编码内幕的相关文章,深入理解VMP的工作原理和技巧。" 在VMP技术中,Handle块是虚拟机执行的关键部分,它包含了用于执行被保护程序的指令序列。在本篇笔记中,作者详细介绍了Handle块的优化过程,包括如何删除不使用的代码段以及如何通过指令变形和等价替换来提高壳模板的安全性。例如,常见的指令优化可能将`jmp`指令替换为`push+retn`或者`lea+jmp`,或者将`lodsbyteptrds:[esi]`优化为`moval,[esi]+addesi,1`等,这些变换旨在混淆原始代码,增加反逆向工程的难度。 在壳模板初始化阶段,作者提到了1.10和1.21两个版本的区别,其中1.21版本增加了`Encodingofap-code`保护,增强了加密效果。在未加密时,代码可能呈现出特定的模式,而加密后,这些模式会被混淆,使分析更加困难。 笔记中还提到,VMP会使用一个名为`ESIResults`的数组来标记Handle块中的指令是否被使用,值为0表示未使用,1表示使用。这为删除不必要的代码提供了依据。此外,通过循环遍历特定的Handle块,并依据某种规律(如`v227&0xFFFFFF00==0xFACE0000`)进行匹配,可以找到需要处理的指令,如`push0xFACE0002`和`movedi,0xFACE0003`,然后将其替换为安全的重定位值或虚拟机上下文。 在结构体使用方面,笔记指出壳模板和用户代码都会通过`Vmp_AllDisassembly`函数进行解析,而且0x8和0x10字段通常都指向相同的结构体。作者还提到了根据`pNtHeader_OptionalHeader.Magic`筛选`ESI_Matching_Array`数组的步骤,这可能是为了进一步确定虚拟机上下文的设置。 这篇笔记深入解析了VMP技术在代码保护中的应用,涉及汇编指令的优化、Handle块的处理以及壳模板的初始化,对于理解反逆向工程技术以及软件保护策略有着重要的参考价值。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】音频处理基础:使用Librosa

![【进阶】音频处理基础:使用Librosa](https://picx.zhimg.com/80/v2-a39e5c9bff1d920097341591ca8a2dfe_1440w.webp?source=1def8aca) # 2.1 Librosa库的安装和导入 Librosa库是一个用于音频处理的Python库。要安装Librosa库,请在命令行中输入以下命令: ``` pip install librosa ``` 安装完成后,可以通过以下方式导入Librosa库: ```python import librosa ``` 导入Librosa库后,就可以使用其提供的各种函数
recommend-type

python中字典转换成json

在Python中,你可以使用`json`模块将字典转换为JSON格式的字符串。下面是一个简单的示例: ```python import json # 假设我们有一个字典 dict_data = { "name": "John", "age": 30, "city": "New York" } # 使用json.dumps()函数将字典转换为JSON json_string = json.dumps(dict_data) print(json_string) # 输出:{"name": "John", "age": 30, "city": "New York"}
recommend-type

C++ Primer 第四版更新:现代编程风格与标准库

"Cpp Primer第四版中文版(电子版)1" 本书《Cpp Primer》第四版是一本深入浅出介绍C++编程语言的教程,旨在帮助初学者和有经验的程序员掌握现代C++编程技巧。作者在这一版中进行了重大更新,以适应C++语言的发展趋势,特别是强调使用标准库来提高编程效率。书中不再过于关注底层编程技术,而是将重点放在了标准库的运用上。 第四版的主要改动包括: 1. 内容重组:为了反映现代C++编程的最佳实践,书中对语言主题的顺序进行了调整,使得学习路径更加顺畅。 2. 添加辅助学习工具:每章增设了“小结”和“术语”部分,帮助读者回顾和巩固关键概念。此外,重要术语以黑体突出,已熟悉的术语以楷体呈现,以便读者识别。 3. 特殊标注:用特定版式标注关键信息,提醒读者注意语言特性,避免常见错误,强调良好编程习惯,同时提供通用的使用技巧。 4. 前后交叉引用:增加引用以帮助读者理解概念之间的联系。 5. 额外讨论和解释:针对复杂概念和初学者常遇到的问题,进行深入解析。 6. 大量示例:提供丰富的代码示例,所有源代码都可以在线获取,便于读者实践和学习。 本书保留了前几版的核心特色,即以实例教学,通过解释和展示语言特性来帮助读者掌握C++。作者的目标是创作一本清晰、全面、准确的教程,让读者在编写程序的过程中学习C++,同时也展示了如何有效地利用这门语言。 《Cpp Primer》第四版不仅适合C++初学者,也适合想要更新C++知识的老手,它全面覆盖了C++语言的各个方面,包括基础语法、类、模板、STL(Standard Template Library)等,同时引入了现代C++的特性,如智能指针、RAII(Resource Acquisition Is Initialization)、lambda表达式等,使读者能够跟上C++语言的发展步伐,提升编程技能。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【基础】网络编程入门:使用HTTP协议

![【基础】网络编程入门:使用HTTP协议](https://img-blog.csdnimg.cn/direct/4fbc6b5a6d744a519429654f56ea988e.png) # 1. 网络编程基础** **1.1 网络基础知识** 网络是连接计算机和设备的系统,允许它们交换数据和资源。它由节点(计算机、服务器、路由器等)和连接它们的数据链路组成。网络可以是局域网(LAN)、广域网(WAN)或互联网。 **1.2 TCP/IP协议栈** TCP/IP协议栈是一组通信协议,用于在网络上传输数据。它分为四层: * **链路层:**处理物理连接和数据传输。 * **网络层:
recommend-type

matlab画矢量分布图

在MATLAB中,绘制矢量分布图通常用于可视化二维或三维空间中的向量场,这有助于理解力场、风速、磁场等现象的分布情况。以下是使用MATLAB创建矢量分布图的基本步骤: 1. 准备数据:首先,你需要有一个表示向量场的矩阵,其中每个元素代表一个点的x、y坐标及其对应的矢量分量。 2. 使用`quiver`函数:MATLAB提供了一个内置函数`quiver(x, y, U, V)`,其中`x`和`y`是网格的行和列坐标,`U`和`V`是对应于每个网格点的x和y分量的向量值。 ```matlab [X, Y] = meshgrid(x, y); % 创建网格 quiver(X,