我想把yolov5中的原有卷积层替换成门控卷积层,代码有什么变化呢
时间: 2024-03-10 19:18:00 浏览: 79
深度学习 修改卷积层
将YoloV5中的卷积层替换为门控卷积层需要进行以下变化:
1.导入门控卷积层代码库
```python
from torch.nn.modules.conv import _ConvNd
from torch.nn.modules.utils import _pair
import torch.nn.functional as F
class GatedConv2d(_ConvNd):
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
padding=0, dilation=1, groups=1, bias=True):
kernel_size = _pair(kernel_size)
stride = _pair(stride)
padding = _pair(padding)
dilation = _pair(dilation)
super(GatedConv2d, self).__init__(
in_channels, out_channels, kernel_size, stride, padding, dilation,
False, _pair(0), groups, bias)
self.weight_i = nn.Parameter(torch.Tensor(out_channels, in_channels, *kernel_size))
self.weight_f = nn.Parameter(torch.Tensor(out_channels, in_channels, *kernel_size))
self.weight_c = nn.Parameter(torch.Tensor(out_channels, in_channels, *kernel_size))
self.weight_o = nn.Parameter(torch.Tensor(out_channels, in_channels, *kernel_size))
self.bias_i = nn.Parameter(torch.Tensor(out_channels))
self.bias_f = nn.Parameter(torch.Tensor(out_channels))
self.bias_c = nn.Parameter(torch.Tensor(out_channels))
self.bias_o = nn.Parameter(torch.Tensor(out_channels))
self.reset_parameters()
def reset_parameters(self):
n = self.in_channels
for k in self.kernel_size:
n *= k
stdv = 1. / math.sqrt(n)
self.weight_i.data.uniform_(-stdv, stdv)
self.weight_f.data.uniform_(-stdv, stdv)
self.weight_c.data.uniform_(-stdv, stdv)
self.weight_o.data.uniform_(-stdv, stdv)
if self.bias is not None:
self.bias_i.data.uniform_(-stdv, stdv)
self.bias_f.data.uniform_(-stdv, stdv)
self.bias_c.data.uniform_(-stdv, stdv)
self.bias_o.data.uniform_(-stdv, stdv)
def forward(self, input):
i = F.conv2d(input, self.weight_i, self.bias_i, self.stride,
self.padding, self.dilation, self.groups)
f = F.conv2d(input, self.weight_f, self.bias_f, self.stride,
self.padding, self.dilation, self.groups)
o = F.conv2d(input, self.weight_o, self.bias_o, self.stride,
self.padding, self.dilation, self.groups)
c = F.conv2d(input, self.weight_c, self.bias_c, self.stride,
self.padding, self.dilation, self.groups)
g = F.sigmoid(f)
c = F.tanh(c)
x = g * c
h = F.relu(i + x)
return o * h
```
2.将YoloV5中的卷积层替换为门控卷积层
在YoloV5的网络定义中,将原有的卷积层替换为门控卷积层即可。
例如,将YoloV5中的卷积层定义
```python
class Conv(nn.Module):
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True):
super(Conv, self).__init__()
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)
self.bn = nn.BatchNorm2d(c2)
self.act = nn.SiLU() if act else nn.Identity()
def forward(self, x):
return self.act(self.bn(self.conv(x)))
```
替换为门控卷积层定义
```python
class Conv(nn.Module):
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True):
super(Conv, self).__init__()
self.conv = GatedConv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)
self.bn = nn.BatchNorm2d(c2)
self.act = nn.SiLU() if act else nn.Identity()
def forward(self, x):
return self.act(self.bn(self.conv(x)))
```
这样就完成了将YoloV5中的卷积层替换为门控卷积层的操作。
阅读全文