请用GNN模型和keras框架预测用户未来一个月内贷款概率的python代码
时间: 2024-01-26 12:02:41 浏览: 133
好的,由于您提供的问题需要使用GNN模型,我假设您需要使用图神经网络来预测用户未来一个月内贷款的概率。本示例代码使用Keras框架实现。
首先,我们需要导入所需的库和模块:
```python
import numpy as np
import pandas as pd
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras import Model
from tensorflow.keras.layers import Input, Dense, Dropout, BatchNormalization, Flatten
from tensorflow.keras.optimizers import Adam
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler, MinMaxScaler
from spektral.layers import GCNConv, GlobalMaxPooling
from spektral.utils import normalized_laplacian
```
接下来,我们需要加载数据集并对其进行预处理。我们假设您已经拥有了一个数据集,并且已经将其保存为CSV文件。在这里,我们需要将数据集分为训练集和测试集,并对数据进行标准化或归一化处理。
```python
# Load data
data = pd.read_csv('data.csv')
# Split data into train and test
train_data, test_data = train_test_split(data, test_size=0.2, random_state=42)
# Split features and labels
X_train = train_data.drop('loan_status', axis=1)
y_train = train_data['loan_status']
X_test = test_data.drop('loan_status', axis=1)
y_test = test_data['loan_status']
# Normalize or scale data
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
```
接下来,我们需要将数据集转换为图形数据,以便我们可以使用GNN模型对其进行处理。在这里,我们将每个样本表示为一个节点,节点之间的关系表示为图形中的边。我们使用Spektral库来构建图形数据。
```python
# Convert data to graph
A = normalized_laplacian(adjacency_matrix)
X = np.array(X_train)
y = np.array(y_train)
graph = (X, A)
# Split graph into train and validation
graph_train, graph_val, y_train, y_val = train_test_split(
graph, y, test_size=0.2, random_state=42)
# Define model inputs
X_in = Input(shape=(X.shape[1],))
A_in = Input(shape=(None,), sparse=True)
# Build graph convolutional layers
gc1 = GCNConv(32, activation='relu')([X_in, A_in])
gc2 = GCNConv(32, activation='relu')(gc1)
pool = GlobalMaxPooling()(gc2)
# Build dense layers
dense1 = Dense(64, activation='relu')(pool)
drop = Dropout(0.5)(dense1)
dense2 = Dense(32, activation='relu')(drop)
dense3 = Dense(1, activation='sigmoid')(dense2)
# Build model
model = Model(inputs=[X_in, A_in], outputs=dense3)
# Compile model
model.compile(optimizer=Adam(lr=0.01), loss='binary_crossentropy', metrics=['accuracy'])
# Train model
model.fit(graph_train, y_train, validation_data=(graph_val, y_val), epochs=100, batch_size=32)
```
最后,我们可以使用训练好的模型来预测测试集中的贷款概率。
```python
# Convert test data to graph
A_test = normalized_laplacian(adjacency_matrix_test)
X_test = scaler.transform(X_test)
graph_test = (X_test, A_test)
# Predict probabilities
y_pred = model.predict(graph_test)
# Evaluate model
score = model.evaluate(graph_test, y_test, batch_size=32)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
```
这是一个基本的示例,您可以根据自己的数据集和需求进行修改和调整。
阅读全文