帮我写一段GNN预测用户的借款意向程度的python代码
时间: 2023-08-28 18:20:48 浏览: 149
好的,下面是一个使用PyTorch和DGL实现的基于GNN的用户借款意向预测的Python代码示例:
```
import dgl
import torch
import torch.nn as nn
import torch.nn.functional as F
import dgl.function as fn
# 定义GCN模型
class GCN(nn.Module):
def __init__(self, in_feats, hidden_feats, out_feats):
super(GCN, self).__init__()
self.conv1 = nn.Conv2d(in_feats, hidden_feats, kernel_size=1)
self.conv2 = nn.Conv2d(hidden_feats, out_feats, kernel_size=1)
def forward(self, g, features):
h = self.conv1(features)
h = F.relu(h)
h = self.conv2(h)
g.ndata['h'] = h
g.update_all(message_func=fn.copy_u('h', 'm'),
reduce_func=fn.sum('m', 'h'))
return g.ndata.pop('h')
# 构建图数据
user_data = {'age': [30, 35, 25, 28],
'gender': ['M', 'F', 'F', 'M'],
'education': ['Bachelor', 'Master', 'PhD', 'Bachelor'],
'married': [False, True, False, True]}
loan_data = {'amount': [1000, 2000, 500, 1500],
'term': [12, 6, 24, 12],
'repayment': ['on-time', 'late', 'on-time', 'on-time']}
edge_data = {'borrow': [0, 1, 2, 3],
'lend': [0, 1, 2, 3]}
user_g = dgl.graph(user_data, edge_data)
loan_g = dgl.graph(loan_data, edge_data)
# 构建节点特征
user_feats = torch.cat([F.one_hot(user_g.ndata['age']),
F.one_hot(user_g.ndata['gender']),
F.one_hot(user_g.ndata['education']),
F.one_hot(user_g.ndata['married'])], dim=-1)
loan_feats = torch.tensor(loan_data['amount'])
# 构建边特征
edge_feats = torch.tensor(loan_data['term'])
# 构建完整图
full_g = dgl.heterograph({('user', 'borrow', 'loan'): (user_g, loan_g)})
# 定义模型
gcn = GCN(user_feats.shape[-1], 128, 1)
# 训练模型
optimizer = torch.optim.Adam(gcn.parameters(), lr=0.01)
for epoch in range(10):
logits = gcn(full_g, user_feats)
loss = F.mse_loss(logits, loan_feats)
optimizer.zero_grad()
loss.backward()
optimizer.step()
# 预测新用户的借款意向
new_user_feats = torch.tensor([0, 1, 0, 0, 0, 0, 1, 0])
new_user_g = dgl.graph({'age': [26], 'gender': ['M'], 'education': ['Bachelor'], 'married': [True]})
new_loan_g = dgl.graph({'amount': [0], 'term': [0]})
new_full_g = dgl.heterograph({('user', 'borrow', 'loan'): (new_user_g, new_loan_g)})
with torch.no_grad():
new_logit = gcn(new_full_g, new_user_feats)
print('New user\'s loan intention:', new_logit.item())
```
需要注意的是,这只是一个简单的示例代码,实际应用中还需要进行更加细致的调整和优化。
阅读全文