帮我写一段GNN预测用户违约概率的python代码
时间: 2023-08-28 08:21:29 浏览: 112
好的,以下是一段简单的GNN预测用户违约概率的Python代码,供您参考:
```python
import dgl
import torch
import torch.nn as nn
import torch.nn.functional as F
# 定义GNN模型
class GNN(nn.Module):
def __init__(self, in_feats, hidden_feats, out_feats):
super(GNN, self).__init__()
self.conv1 = dgl.nn.GraphConv(in_feats, hidden_feats)
self.conv2 = dgl.nn.GraphConv(hidden_feats, out_feats)
def forward(self, g, features):
h = self.conv1(g, features)
h = F.relu(h)
h = self.conv2(g, h)
return h
# 构建图数据
g = dgl.DGLGraph()
g.add_nodes(num_nodes) # 添加节点数量
g.add_edges(src, dst) # 添加边
# 定义特征和标签
features = torch.randn(num_nodes, num_features)
labels = torch.tensor(y_train)
# 定义模型和优化器
model = GNN(num_features, hidden_feats, num_classes)
optimizer = torch.optim.Adam(model.parameters(), lr=lr)
# 训练模型
model.train()
for epoch in range(num_epochs):
logits = model(g, features)
loss = F.cross_entropy(logits[train_mask], labels[train_mask])
optimizer.zero_grad()
loss.backward()
optimizer.step()
# 预测测试集
model.eval()
with torch.no_grad():
logits = model(g, features)
pred = logits[test_mask].argmax(dim=1)
accuracy = (pred == labels[test_mask]).float().mean().item()
print("Accuracy: {:.4f}".format(accuracy))
```
需要根据具体问题进行参数配置,例如节点数量、特征数量、隐藏层节点数量、类别数量、训练集和测试集的掩码等。同时,还需要根据具体情况处理数据、构建图数据等。
阅读全文