L-BFGS的matlab代码示例
时间: 2024-05-04 10:21:10 浏览: 155
以下是一个使用L-BFGS优化方法的matlab代码示例:
```matlab
function [x_opt, f_opt] = lbfgs(fun, x0, opts)
% LBFGS - Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS)
%
% MINIMIZE:
% f(x) = fun(x)
% where fun: R^n -> R.
%
% INPUTS:
% fun: function handle to the objective function
% [f, g] = fun(x) returns the function value and gradient at x
% f: scalar, function value at x
% g: column vector, gradient at x
% x0: column vector, initial point
% opts: struct, optional inputs
% opts.max_iter: scalar, maximum number of iterations (default: 100)
% opts.tol_fun: scalar, tolerance for the function value (default: 1e-6)
% opts.tol_grad: scalar, tolerance for the gradient (default: 1e-6)
% opts.m: scalar, number of previous iterations to remember (default: 10)
%
% OUTPUTS:
% x_opt: column vector, optimal point
% f_opt: scalar, optimal function value
%
% REFERENCES:
% [1] Nocedal, J., & Wright, S. J. (2006). Numerical optimization (2nd ed.).
% Springer New York. https://doi.org/10.1007/978-0-387-40065-5
% default options
if nargin < 3
opts = struct();
end
if ~isfield(opts, 'max_iter')
opts.max_iter = 100;
end
if ~isfield(opts, 'tol_fun')
opts.tol_fun = 1e-6;
end
if ~isfield(opts, 'tol_grad')
opts.tol_grad = 1e-6;
end
if ~isfield(opts, 'm')
opts.m = 10;
end
% initialization
x = x0;
[f, g] = fun(x);
p = -g;
H = eye(length(x));
s = [];
y = [];
alpha = zeros(opts.m, 1);
beta = zeros(opts.m, 1);
% main loop
for iter = 1 : opts.max_iter
% line search
t = 1;
while true
x_new = x + t * p;
[f_new, g_new] = fun(x_new);
if f_new < f + opts.tol_fun * t * g' * p
break;
end
t = t / 2;
if t < eps
break;
end
end
% convergence check
if norm(g_new) < opts.tol_grad
break;
end
% update s, y, and H
if size(s, 2) == opts.m
s(:, 1:end-1) = s(:, 2:end);
y(:, 1:end-1) = y(:, 2:end);
alpha(1:end-1) = alpha(2:end);
beta(1:end-1) = beta(2:end);
end
s(:, end+1) = x_new - x;
y(:, end+1) = g_new - g;
alpha(end+1) = s(:, end)' * y(:, end) / (y(:, end)' * y(:, end));
q = g_new;
for i = size(s, 2) : -1 : max(1, size(s, 2) - opts.m + 1)
rho = 1 / (y(:, i)' * s(:, i));
alpha(i) = rho * s(:, i)' * q;
q = q - alpha(i) * y(:, i);
end
if size(s, 2) > 0
gamma = (s(:, end)' * y(:, end)) / (y(:, end)' * y(:, end));
q = gamma * q;
for i = max(1, size(s, 2) - opts.m + 1) : size(s, 2)
rho = 1 / (y(:, i)' * s(:, i));
beta(i) = rho * y(:, i)' * q;
q = q + s(:, i) * (alpha(i) - beta(i));
end
end
H = q * p' + p * q';
H = (H + H') / 2;
% update x, f, g, and p
x = x_new;
f = f_new;
g = g_new;
p = -H \ g;
end
x_opt = x;
f_opt = f;
end
```
该函数接受一个函数句柄 `fun`,一个初始点 `x0`,以及一些可选参数 `opts`。函数 `fun` 应该返回函数值和梯度,以便 L-BFGS 方法可以优化该函数。该函数还可以接受其他可选参数,例如最大迭代次数、目标函数和梯度的容差等。
该代码使用了标准的 L-BFGS 更新公式,包括对 S、Y 和 alpha、beta 的更新以及 Hessian 矩阵的逆的计算。该代码还包括一个线搜索步骤,以确保每次更新都是朝着下降方向。
阅读全文