在resnet50网络的每个stage之后添加CBAM注意力机制,给出完整代码演示并详细解释
时间: 2024-02-13 19:02:00 浏览: 323
好的,让我们继续使用ResNet50网络,但这次我们将用CBAM(Convolutional Block Attention Module)注意力机制来增强模型。CBAM是一种用于图像分类任务的注意力机制,它使用了一种称为“空间注意力”和“通道注意力”的方法,以增强模型的表现力。现在,我们来看看如何在ResNet50网络的每个stage之后添加CBAM注意力机制。
首先,让我们定义CBAM模块,代码如下:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class ChannelAttention(nn.Module):
def __init__(self, in_channels, reduction_ratio=16):
super(ChannelAttention, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.max_pool = nn.AdaptiveMaxPool2d(1)
self.fc1 = nn.Conv2d(in_channels, in_channels // reduction_ratio, kernel_size=1, bias=False)
self.relu1 = nn.ReLU(inplace=True)
self.fc2 = nn.Conv2d(in_channels // reduction_ratio, in_channels, kernel_size=1, bias=False)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
avg = self.avg_pool(x)
max = self.max_pool(x)
out = self.fc1(avg) + self.fc1(max)
out = self.relu1(out)
out = self.fc2(out)
out = self.sigmoid(out)
return x * out.expand_as(x)
class SpatialAttention(nn.Module):
def __init__(self, kernel_size=7):
super(SpatialAttention, self).__init__()
assert kernel_size in (3, 7), 'kernel size must be 3 or 7'
padding = 3 if kernel_size == 7 else 1
self.conv = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
avg = torch.mean(x, dim=1, keepdim=True)
max, _ = torch.max(x, dim=1, keepdim=True)
out = torch.cat([avg, max], dim=1)
out = self.conv(out)
out = self.sigmoid(out)
return x * out.expand_as(x)
class CBAMBlock(nn.Module):
def __init__(self, in_channels, reduction_ratio=16, kernel_size=7):
super(CBAMBlock, self).__init__()
self.channel_att = ChannelAttention(in_channels, reduction_ratio)
self.spatial_att = SpatialAttention(kernel_size)
def forward(self, x):
out = self.channel_att(x)
out = self.spatial_att(out)
return out
```
CBAM模块由两部分组成:通道注意力部分和空间注意力部分。通道注意力部分可以帮助模型选择性地关注特定通道的特征,而空间注意力部分可以帮助模型选择性地关注特定空间位置的特征。这两部分组合起来可以增强模型的表现力。
接下来,我们可以在ResNet50中的每个stage之后添加CBAM模块。具体来说,我们可以在每个stage的最后一个残差块之后添加CBAM模块。例如,我们可以在stage1的最后一个残差块之后添加CBAM模块,代码如下:
```python
class ResNet50(nn.Module):
def __init__(self):
super(ResNet50, self).__init__()
self.stage1 = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
)
self.stage2 = nn.Sequential(
nn.Conv2d(64, 64, kernel_size=1, stride=1, bias=False),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
nn.Conv2d(64, 256, kernel_size=1, stride=1, bias=False),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
nn.Conv2d(256, 1024, kernel_size=1, stride=1, bias=False),
nn.BatchNorm2d(1024),
CBAMBlock(1024), # 添加CBAM模块
nn.ReLU(inplace=True),
nn.Conv2d(1024, 256, kernel_size=1, stride=1, bias=False),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3, stride=2, padding=1, bias=False),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
nn.Conv2d(256, 512, kernel_size=1, stride=1, bias=False),
nn.BatchNorm2d(512)
)
# 更多的stage和CBAM模块可以在这里添加
def forward(self, x):
x = self.stage1(x)
x = self.stage2(x)
# 更多的stage和CBAM模块可以在这里添加
return x
```
在这个例子中,我们在stage2的最后一个残差块之后添加了一个CBAM模块。其他stage和CBAM模块可以类似地添加。这样,我们就可以在ResNet50网络的每个stage之后添加CBAM注意力机制。
阅读全文