将yolov5s的主干网络替换成resnet50,并在主干网络和加强特征提取网络之间应用CBAM注意力机制,给出代码演示并详细解释
时间: 2024-02-12 10:03:20 浏览: 92
基于注意力生成对抗网络的图像超分辨率重建方法
首先我们需要安装必要的库和YoloV5模型:
```python
!pip install torch torchvision
!git clone https://github.com/ultralytics/yolov5.git
```
然后我们可以定义替换主干网络的新模型,并应用CBAM注意力机制:
```python
import torch
import torch.nn as nn
from models.common import Conv
from models.yolo import Detect, SPP
from models.experimental import MixConv2d
from models.layers import CBAM
class ResNet50(nn.Module):
def __init__(self):
super().__init__()
# Define ResNet50 backbone
self.backbone = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1),
nn.Sequential(*list(torchvision.models.resnet50(pretrained=True).children())[4:-2])
)
# Apply CBAM attention to feature layers
self.backbone[5][2].conv2 = CBAM(self.backbone[5][2].conv2, 16)
self.backbone[5][3].conv2 = CBAM(self.backbone[5][3].conv2, 16)
self.backbone[5][4].conv3 = CBAM(self.backbone[5][4].conv3, 16)
# Define additional layers for feature extraction
self.conv1 = Conv(2048, 512, 1)
self.conv2 = Conv(1024, 512, 1)
self.conv3 = Conv(512, 256, 1)
self.spp = SPP()
self.detect = Detect()
def forward(self, x):
x = self.backbone[:4](x)
x = self.backbone[4](x)
x = self.backbone[5](x)
x = self.conv1(x)
x = nn.Upsample(size=self.backbone[4].shape[2:])(x)
x = torch.cat([x, self.backbone[4]], 1)
x = self.conv2(x)
x = nn.Upsample(size=self.backbone[3].shape[2:])(x)
x = torch.cat([x, self.backbone[3]], 1)
x = self.conv3(x)
x = self.spp(x)
return self.detect(x)
```
在新模型中,我们使用了ResNet50作为主干网络,然后在主干网络的特定层上应用CBAM注意力机制。接下来,我们定义了一些额外的层来进一步提取特征,包括Conv层,SPP层和Detect层。
最后,我们可以将新模型用于目标检测任务,如下所示:
```python
import torchvision
from PIL import Image
import numpy as np
from utils.general import non_max_suppression
from utils.torch_utils import select_device
# Define device
device = select_device('')
# Load model
model = ResNet50().to(device).eval()
# Load image
img = Image.open('test.jpg')
img = img.resize((640, 640))
img_tensor = torchvision.transforms.functional.to_tensor(img).to(device)
# Make prediction
with torch.no_grad():
pred = model(img_tensor.unsqueeze(0))
# Post-processing
pred = non_max_suppression(pred, 0.4, 0.5)
boxes = pred[0][:, :4].cpu().numpy().astype(np.int32)
scores = pred[0][:, 4].cpu().numpy()
classes = pred[0][:, 5].cpu().numpy().astype(np.int32)
# Display results
for box, score, cls in zip(boxes, scores, classes):
x1, y1, x2, y2 = box
label = f'class {cls}'
print(label, score)
```
在这个例子中,我们加载了一个测试图片,然后将其输入到新模型中进行目标检测。最后,我们使用非极大值抑制来去除重叠的边界框,并输出检测到的类别和置信度得分。
阅读全文