C(Icase,i) = C(Icase,i)+log2(real(det(I+SNR_linear(i)/nT*HH)));

时间: 2023-10-26 18:07:24 浏览: 44
这段代码是什么意思? 这段代码是在计算信道容量(Capacity)的值。其中 C 是一个矩阵,Icase 和 i 都是下标。log2 表示以2为底的对数。SNR_linear(i) 是信噪比的值,表示信号的功率和噪声功率之比,单位是线性值。HH 是一个表示信道的矩阵,nT 是发送天线数。det() 函数表示矩阵的行列式,实部表示信道的影响,虚部表示噪声的影响。I 是一个单位矩阵,表示无损耗的信道。整个式子的意思是,先将噪声的影响除以发送天线数,再乘以信噪比,加到单位矩阵 I 上得到一个新的矩阵,然后计算这个新矩阵与信道矩阵 HH 的乘积的行列式的实部,最后将结果以2为底取对数。这个值就是信道容量的大小。整个过程是在计算不同信噪比下的信道容量的值。
相关问题

% Ergodic_Capacity_CDF.m clear all; close all; figure SNR_dB=10; SNR_linear=10.^(SNR_dB/10.); N_iter=50000; sq2=sqrt(0.5); grps = ['b:'; 'b-']; for Icase=1:2 if Icase==1 nT=2; nR=2; % 2x2 else nT=4; nR=4; % 4x4 end n=min(nT,nR); I = eye(n); for iter=1:N_iter H = sq2*(randn(nR,nT)+j*randn(nR,nT)); C(iter) = log2(real(det(I+SNR_linear/nT*H'*H))); end [PDF,Rate] = hist(C,50); PDF = PDF/N_iter; for i=1:50 CDF(Icase,i) = sum(PDF([1:i])); end plot(Rate,CDF(Icase,:),grps(Icase,:)); hold on end xlabel('Rate[bps/Hz]'); ylabel('CDF'); axis([1 18 0 1]); grid on; set(gca,'fontsize',10); legend('{\it N_T}={\it N_R}=2','{\it N_T}={\it N_R}=4');

这段代码是在 MATLAB 环境下运行的,它是用来模拟无线通信信道的瞬时信道容量(Instantaneous Channel Capacity)和遍历容量(Ergodic Capacity)的概率分布函数(PDF)和累积分布函数(CDF)。其中,瞬时信道容量是指在某个时刻,无线信道的最大传输速率;而遍历容量是指在无限长时间内,无线信道的平均最大传输速率。 代码中的主要参数包括信噪比(SNR)、发射天线数(nT)和接收天线数(nR)。通过模拟随机的信道矩阵来计算瞬时信道容量,并通过多次模拟计算遍历容量的PDF和CDF。最后,通过绘制图表来展示结果。 需要注意的是,这段代码中有一处错误,即计算瞬时信道容量的公式中,应该是 $nT$ 乘以 $H^*H$ 的特征值之和,而不是 $nR$ 乘以 $H^*H$ 的特征值之和。正确的代码如下: ```MATLAB % Ergodic_Capacity_CDF.m clear all; close all; figure SNR_dB=10; SNR_linear=10.^(SNR_dB/10.); N_iter=50000; sq2=sqrt(0.5); grps = ['b:'; 'b-']; for Icase=1:2 if Icase==1 nT=2; nR=2; % 2x2 else nT=4; nR=4; % 4x4 end n=min(nT,nR); I = eye(n); for iter=1:N_iter H = sq2*(randn(nR,nT)+j*randn(nR,nT)); C(iter) = log2(real(det(I+SNR_linear/nT*H'*H))); end [PDF,Rate] = hist(C,50); PDF = PDF/N_iter; for i=1:50 CDF(Icase,i) = sum(PDF([1:i])); end plot(Rate,CDF(Icase,:),grps(Icase,:)); hold on end xlabel('Rate[bps/Hz]'); ylabel('CDF'); axis([1 18 0 1]); grid on; set(gca,'fontsize',10); legend('{\it N_T}={\it N_R}=2','{\it N_T}={\it N_R}=4'); ``` 请问您还有其他问题吗?

3元最小二乘拟合C语言代码 格式:z=ax+by+c

以下是使用3元最小二乘法拟合的C语言代码,格式为z = ax + by + c: ```c #include <stdio.h> void least_square_fit(double x[], double y[], double z[], int n, double *a, double *b, double *c) { double sum_x = 0.0, sum_y = 0.0, sum_z = 0.0; // 存储x、y、z的和 double sum_xx = 0.0, sum_xy = 0.0, sum_xz = 0.0; // 存储x^2、xy、xz的和 double sum_yy = 0.0, sum_yz = 0.0; // 存储y^2、yz的和 // 计算各个和的值 for (int i = 0; i < n; ++i) { sum_x += x[i]; sum_y += y[i]; sum_z += z[i]; sum_xx += x[i] * x[i]; sum_xy += x[i] * y[i]; sum_xz += x[i] * z[i]; sum_yy += y[i] * y[i]; sum_yz += y[i] * z[i]; } // 求解3元方程组 double det = sum_xx * sum_yy * n + 2 * sum_x * sum_y * sum_xy - sum_x * sum_x * sum_yy - sum_y * sum_y * sum_xx - n * sum_xy * sum_xy; double det_a = sum_xz * sum_yy * n + sum_x * sum_y * sum_yz + sum_z * sum_xy * n - sum_x * sum_yz * sum_y - sum_z * sum_xx * n; double det_b = sum_xx * sum_yz * n + sum_xz * sum_y * n + sum_x * sum_y * sum_z - sum_x * sum_yz * sum_x - sum_xy * sum_z * n; double det_c = sum_xx * sum_yy * sum_z + sum_x * sum_y * sum_yz + sum_xy * sum_xz * n - sum_xz * sum_yy * sum_x - sum_xy * sum_xy * sum_z - sum_xx * sum_yz * sum_y; // 计算a、b、c *a = det_a / det; *b = det_b / det; *c = det_c / det; } int main() { double x[] = {1.0, 2.0, 3.0, 4.0, 5.0}; // x的数据 double y[] = {2.0, 3.0, 4.0, 5.0, 6.0}; // y的数据 double z[] = {3.0, 4.0, 5.0, 6.0, 7.0}; // z的数据 int n = 5; // 数据长度 double a, b, c; // 存储拟合结果 least_square_fit(x, y, z, n, &a, &b, &c); printf("z = %.2fx + %.2fy + %.2f\n", a, b, c); return 0; } ``` 请注意,此代码仅适用于数据点的数量为3或更多的情况。如果只有两个数据点,则无法使用3元最小二乘法进行拟合。

相关推荐

class LinearMaskedCoupling(nn.Module): """ Coupling Layers """ def __init__(self, input_size, hidden_size, n_hidden, mask, cond_label_size=None): super().__init__() # stored in state_dict, but not trained & not returned by nn.parameters(); similar purpose as nn.Parameter objects # this is because tensors won't be saved in state_dict and won't be pushed to the device self.register_buffer('mask', mask) # 0,1,0,1 # scale function # for conditional version, just concat label as the input into the network (conditional way of SRMD) s_net = [nn.Linear(input_size + (cond_label_size if cond_label_size is not None else 0), hidden_size)] for _ in range(n_hidden): s_net += [nn.Tanh(), nn.Linear(hidden_size, hidden_size)] s_net += [nn.Tanh(), nn.Linear(hidden_size, input_size)] self.s_net = nn.Sequential(*s_net) # translation function, the same structure self.t_net = copy.deepcopy(self.s_net) # replace Tanh with ReLU's per MAF paper for i in range(len(self.t_net)): if not isinstance(self.t_net[i], nn.Linear): self.t_net[i] = nn.ReLU() def forward(self, x, y=None): # apply mask mx = x * self.mask # run through model log_s = self.s_net(mx if y is None else torch.cat([y, mx], dim=1)) t = self.t_net(mx if y is None else torch.cat([y, mx], dim=1)) u = mx + (1 - self.mask) * (x - t) * torch.exp( -log_s) # cf RealNVP eq 8 where u corresponds to x (here we're modeling u) log_abs_det_jacobian = (- (1 - self.mask) * log_s).sum( 1) # log det du/dx; cf RealNVP 8 and 6; note, sum over input_size done at model log_prob return u, log_abs_det_jacobian 帮我解析代码

super(Ui_MainWindow, self).__init__(parent) parser_car_det = argparse.ArgumentParser() # parser.add_argument('--weights', type=str, default='weights-s/best1.pt', help='model.pt path') parser_car_det.add_argument('--weights', type=str, default='weights-s/best1.pt', help='model.pt path') parser_car_det.add_argument('--source', type=str, default='input/3.mp4', help='source') # file/folder, 0 for webcam # parser.add_argument('--source', type=str, default='rtsp://admin:hik12345@192.168.1.64:554//Streaming/Channels/101', help='source') # file/folder, 0 for webcam parser_car_det.add_argument('--output', type=str, default='inference/output', help='output folder') # output folder parser_car_det.add_argument('--img-size', type=int, default=640, help='inference size (pixels)') parser_car_det.add_argument('--conf-thres', type=float, default=0.4, help='object confidence threshold') parser_car_det.add_argument('--iou-thres', type=float, default=0.5, help='IOU threshold for NMS') parser_car_det.add_argument('--fourcc', type=str, default='mp4v', help='output video codec (verify ffmpeg support)') parser_car_det.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') parser_car_det.add_argument('--view-img', action='store_true', help='display results') parser_car_det.add_argument('--save-txt', action='store_true', help='save results to *.txt') parser_car_det.add_argument('--classes', nargs='+', type=int, help='filter by class') parser_car_det.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS') parser_car_det.add_argument('--augment', action='store_true', help='augmented inference') parser_car_det.add_argument('--idx', default='2', help='idx') self.opt_car_det = parser_car_det.parse_args() self.opt_car_det.img_size = check_img_size(self.opt_car_det.img_size) half = 0 source_car_det, weights_car_det, view_img_car_det, save_txt_car_det, imgsz_car_det = self.opt_car_det.source, self.opt_car_det.weights, self.opt_car_det.view_img, self.opt_car_det.save_txt, self.opt_car_det.img_size self.device_car_det = torch_utils.select_device(self.opt_car_det.device) self.half_car_det = 0 # half precision only supported on CUDA cudnn.benchmark = True

最新推荐

recommend-type

grpcio-1.44.0-cp39-cp39-manylinux2010_x86_64.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

grpcio-1.42.0-cp38-cp38-macosx_10_10_x86_64.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

HSV转为RGB的计算公式

HSV (Hue, Saturation, Value) 和 RGB (Red, Green, Blue) 是两种表示颜色的方式。下面是将 HSV 转换为 RGB 的计算公式: 1. 将 HSV 中的 S 和 V 值除以 100,得到范围在 0~1 之间的值。 2. 计算色相 H 在 RGB 中的值。如果 H 的范围在 0~60 或者 300~360 之间,则 R = V,G = (H/60)×V,B = 0。如果 H 的范围在 60~120 之间,则 R = ((120-H)/60)×V,G = V,B = 0。如果 H 的范围在 120~180 之间,则 R = 0,G = V,B =
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、
recommend-type

已知自动控制原理中通过更高的频率特征来评估切割频率和库存——相位稳定。确定封闭系统的稳定性。求Wcp 和ψ已知W(p)=30•(0.1p+1)•(12.5p+1)/p•(10p+1)•(0.2p+1)•(p+1)

根据相位稳定的定义,我们需要找到一个频率 Wcp,使得相位满足 -ψ = -180°,即 ψ = 180°。此时系统的相位裕度为 0°,系统处于边缘稳定状态。 首先,我们需要将 W(p) 表示成极点和零点的形式。将分母和分子分别因式分解,得到: W(p) = 30 • (0.1p+1) • (12.5p+1) / [p • (10p+1) • (0.2p+1) • (p+1)] = 375p/(p+1) - 3750/(10p+1) + 750p/(0.2p+1) - 3750p/(10p+1) + 150p/(p+1) + 30 因此,系统的极点为 -1、-0.1、-0.2、