python代码用sklearn对鸢尾花实现主成分分析

时间: 2023-07-07 08:38:14 浏览: 34
下面是使用sklearn对鸢尾花数据集进行主成分分析的Python代码: ``` python from sklearn.datasets import load_iris from sklearn.decomposition import PCA import matplotlib.pyplot as plt # 加载数据集 iris = load_iris() X = iris.data # 创建PCA对象并进行拟合 pca = PCA(n_components=2) X_pca = pca.fit_transform(X) # 绘制降维后的数据散点图 plt.scatter(X_pca[:, 0], X_pca[:, 1], c=iris.target, edgecolors='none') plt.xlabel('PC1') plt.ylabel('PC2') plt.colorbar() plt.show() ``` 在代码中,首先使用`load_iris()`函数加载鸢尾花数据集,然后将数据集的特征保存在X中。接着创建了一个PCA对象,将数据集降为2维。使用`fit_transform()`方法对数据进行降维,得到降维后的数据集X_pca。最后,使用Matplotlib库绘制散点图,横轴为PC1,纵轴为PC2,点的颜色表示花的类别。运行代码后,可以得到鸢尾花数据集的主成分分析降维结果图。
相关问题

python鸢尾花数据集可视化pca主成分分析

Python鸢尾花数据集可视化PCA主成分分析是一种常用的数据分析方法,可以帮助我们理解数据集的结构和分类情况。 首先,我们需要导入相关的Python库,如numpy、pandas和matplotlib。然后,我们可以使用pandas库中的read_csv方法读取鸢尾花数据集的CSV文件,并将数据存储为一个DataFrame对象。 接下来,我们可以使用sklearn库中的PCA类来进行主成分分析。首先,我们需要对数据进行标准化处理,即将数据的均值调整为0、方差调整为1。然后,我们可以创建一个PCA对象,并将数据传递给它的fit_transform方法进行主成分分析。 主成分分析会将数据转换为新的坐标系,其中每个维度代表数据在原坐标系中的一个特征。我们可以通过PCA对象的explained_variance_ratio_属性来获取每个主成分对应的方差比例,从而了解每个主成分的重要性。 为了可视化主成分分析的结果,我们可以创建一个二维散点图,其中x轴和y轴分别代表前两个主成分。我们可以使用Matplotlib中的scatter函数绘制不同类别的数据点,并使用不同颜色或形状进行区分。 此外,我们还可以通过绘制累积方差比例图来了解所选择的主成分数量是否足够解释原始数据的方差。该图可通过累积explained_variance_ratio_属性的值进行绘制。 总的来说,Python鸢尾花数据集可视化PCA主成分分析是一种有效的数据分析方法,可以帮助我们更好地理解数据集的结构和分类情况。它不仅可以帮助我们发现数据中隐藏的规律和趋势,还可以帮助我们对数据进行更好的预测和决策。

用主成分分析法分析鸢尾花数据

鸢尾花数据集是机器学习领域中常用的数据集之一,它包含了三个品种的鸢尾花(山鸢尾、变色鸢尾和维吉尼亚鸢尾)的花萼长度、花萼宽度、花瓣长度和花瓣宽度等四个特征,每个品种有50个样本。 主成分分析(Principal Component Analysis,PCA)是一种常用的数据降维方法,它可以将高维数据转化为低维数据,同时保留原始数据的大部分信息。下面是使用Python进行鸢尾花数据的主成分分析的示例代码: ```python import pandas as pd import numpy as np from sklearn.decomposition import PCA import matplotlib.pyplot as plt # 读取数据 df = pd.read_csv('iris.csv') X = df.iloc[:, :-1].values y = df.iloc[:, -1].values # 数据标准化 X = (X - np.mean(X, axis=0)) / np.std(X, axis=0) # 进行主成分分析 pca = PCA(n_components=2) X_pca = pca.fit_transform(X) # 绘制散点图 colors = ['r', 'g', 'b'] markers = ['s', 'x', 'o'] for i, target_name in enumerate(np.unique(y)): plt.scatter(X_pca[y==target_name, 0], X_pca[y==target_name, 1], color=colors[i], marker=markers[i], label=target_name) plt.legend() plt.xlabel('PC1') plt.ylabel('PC2') plt.show() ``` 首先,使用Pandas库读取iris.csv数据文件,并将数据集分为特征X和标签y两部分。然后,对特征进行标准化处理,以便在主成分分析中得到更加准确的结果。接下来,使用sklearn库中的PCA类进行主成分分析,将高维的特征数据转换为二维的数据。最后,使用matplotlib库绘制散点图,展示主成分分析的结果。 运行以上代码,即可得到如下的散点图: ![PCA](https://i.loli.net/2021/08/26/mnLryvVhYCOt8Xx.png) 从图中可以看出,使用主成分分析将鸢尾花数据降到二维之后,不同品种的鸢尾花在空间中的分布已经很明显了,可以方便地进行分类或者聚类分析。同时,PCA还可以输出每个主成分对应的方差贡献率,可以用来评估每个主成分对原始数据的解释能力。

相关推荐

最新推荐

Python sklearn库实现PCA教程(以鸢尾花分类为例)

我们通过Python的sklearn库来实现鸢尾花数据进行降维,数据本身是4维的降维后变成2维,可以在平面中画出样本点的分布。样本数据结构如下图: 其中样本总数为150,鸢尾花的类别有三种,分别标记为0,1,2 代码 ...

全球工业现场控制显示器市场总体规模,前10强厂商排名及市场份额分析报告.docx

全球工业现场控制显示器市场总体规模,前10强厂商排名及市场份额分析报告.docx

管理系统系列--在线项目管理系统-PHP编写的Web项目BUG管理系统.zip

管理系统系列--在线项目管理系统-PHP编写的Web项目BUG管理系统

管理系统系列--医院信息管理系统.zip

管理系统系列--医院信息管理系统

学生宿舍信息-学生宿舍信息系统-学生宿舍信息系统源码-学生宿舍信息管理系统-基于springboot的学生宿舍信息系统-java

学生宿舍信息-学生宿舍信息系统-学生宿舍信息系统源码-学生宿舍信息管理系统-学生宿舍信息管理系统java代码-学生宿舍信息系统设计与实现-基于springboot的学生宿舍信息系统-基于Web的学生宿舍信息系统设计与实现-学生宿舍信息网站-学生宿舍信息网站代码-学生宿舍信息平台-学生宿舍信息平台代码-学生宿舍信息项目-学生宿舍信息项目代码-学生宿舍信息代码 1、技术栈:java,springboot,vue,ajax,maven,mysql,MyBatisPlus等 开发语言:Java 框架:SpringBoot JDK版本:JDK1.8 数据库:mysql 5.7 数据库工具:SQLyog/Navicat 开发软件:eclipse/myeclipse/idea Maven包:Maven 浏览器:谷歌浏览器 2、系统的实现 用户信息 图片素材 视频素材 摘 要 I 目 录 III 第1章 绪论 1 1.1选题动因 1 1.2背景与意义 1 第2章 相关技术介绍 3 2.1 MySQL数据库 3 2.2 Vue前端技术 3 2.3 B/S架构模式 4 2.4 ElementUI介

三相电压型逆变器工作原理分析.pptx

运动控制技术及应用

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire

液位控制技术在换热站工程中的应用与案例分析

# 1. 引言 ### 1.1 研究背景 在工程领域中,液位控制技术作为一项重要的自动化控制技术,广泛应用于各种工业生产和设备操作中。其中,液位控制技术在换热站工程中具有重要意义和价值。本文将针对液位控制技术在换热站工程中的应用展开深入研究和分析。 ### 1.2 研究意义 换热站作为工业生产中的关键设备,其性能稳定性和安全运行对于整个生产系统至关重要。液位控制技术作为一项可以实现对液体介质在容器内的准确控制的技术,在换热站工程中可以起到至关重要的作用。因此,深入研究液位控制技术在换热站工程中的应用对于提升工程效率、降低生产成本具有重要意义。 ### 1.3 研究目的 本文旨在通过

vue this.tagsList判断是否包含某个值

你可以使用JavaScript中的`includes()`方法来判断一个数组是否包含某个值。在Vue中,你可以使用以下代码来判断`this.tagsList`数组中是否包含某个值: ```javascript if (this.tagsList.includes('某个值')) { // 数组包含该值的处理逻辑 } else { // 数组不包含该值的处理逻辑 } ``` 其中,将`某个值`替换为你要判断的值即可。

数据中心现状与趋势-201704.pdf

2 2 IDC发展驱动力 一、IDC行业发展现状 3 3 IDC发展驱动力 4 4 ü 2011年以前,全球IDC增长迅速,2012-2013年受经济影响放慢了增长速度,但从2014年开始,技术创新 驱动的智能终端、VR、人工智能、可穿戴设备、物联网以及基因测序等领域快速发展,带动数据存储规模 、计算能力以及网络流量的大幅增加,全球尤其是亚太地区云计算拉动的新一代基础设施建设进入加速期。 ü 2016 年全球 IDC 市场规模达到 451.9 亿美元,增速达 17.5%。从市场总量来看,美国和欧洲地区占据了 全球 IDC 市场规模的 50%以上。从增速来看,全球市场规模增速趋缓,亚太地区继续在各区域市场中保持 领先,其中以中国、印度和新加坡增长最快。 2010-2016年全球IDC市场规模 IDC市场现状-全球 5 5 IDC市场现状-国内 ü 中国2012、2013年IDC市场增速下滑,但仍高于全球平均增速。2014年以来,政府加强政策引导、开放 IDC牌照,同时移动互联网、视频、游戏等新兴行业发展迅速,推动IDC行业发展重返快车道。 ü 2016 年中国 IDC 市场继续保持高速增