%matplotlib inline from sklearn.cluster import KMeans#导入sklearn中kmeans聚类包 import numpy as np from matplotlib import pyplot as plt import sklearn.datasets as datasets iris=datasets.load_iris() #1 查看iris包括哪些信息,比如数据,label等。将这些信息打印出来; #2 信息中是否已包含每一样本所属的类?没聚类之彰,是否可以打印iris每一个label的样本个数; #3 画出第一类label的前两列的散点图; #4 用KMeans对数据进行聚类; #5 打印各聚类中心; #6 打印聚类后几个点的类标号; #7 打印迭代次数; #8 说明以下代码的作用: data=iris.data k=[] for i in range(1,20): km=KMeans(n_clusters=i,init='random',n_init=10,max_iter=200,tol=1e-04,random_state=0) km.fit(data) # inertia_:Sum of squared distances of samples to their closest cluster center. k.append(km.inertia_) plt.plot(range(1,20),k,marker='o') plt.xlabel('Number of cluster') plt.ylabel('Distorton') #9 使用BIRCH算法对iris进行了聚类,将同一类中的前两维用相同的颜色画出来。 #10 使用DBSCAN算法对iris进行了聚类,将同一类中的前两维用相同的颜色画出来。

时间: 2024-02-04 20:03:52 浏览: 21
1. iris包含数据、标签、标签名字、数据描述、特征名字等信息,可以使用以下代码打印出来: ```python print("数据:\n", iris.data) print("标签:\n", iris.target) print("标签名字:\n", iris.target_names) print("数据描述:\n", iris.DESCR) print("特征名字:\n", iris.feature_names) ``` 2. 信息中已经包含每一个样本所属的类,可以使用以下代码打印每一类的样本个数: ```python for i in range(len(iris.target_names)): print("类别", iris.target_names[i], "的样本个数为:", len(iris.target[iris.target==i])) ``` 3. 画出第一类label的前两列的散点图,可以使用以下代码: ```python plt.scatter(iris.data[iris.target==0, 0], iris.data[iris.target==0, 1]) plt.xlabel('Sepal length') plt.ylabel('Sepal width') plt.show() ``` 4. 使用KMeans对数据进行聚类,可以使用以下代码: ```python km = KMeans(n_clusters=3, init='random', n_init=10, max_iter=200, tol=1e-04, random_state=0) km.fit(iris.data) ``` 5. 打印各聚类中心,可以使用以下代码: ```python print("聚类中心:\n", km.cluster_centers_) ``` 6. 打印聚类后几个点的类标号,可以使用以下代码: ```python print("聚类后的标签:\n", km.labels_[:5]) ``` 7. 打印迭代次数,可以使用以下代码: ```python print("迭代次数:\n", km.n_iter_) ``` 8. 以下代码的作用是绘制不同聚类数目下,样本到最近聚类中心的距离之和的变化曲线,用于寻找最佳聚类数目。 ```python data = iris.data k = [] for i in range(1, 20): km = KMeans(n_clusters=i, init='random', n_init=10, max_iter=200, tol=1e-04, random_state=0) km.fit(data) k.append(km.inertia_) plt.plot(range(1, 20), k, marker='o') plt.xlabel('Number of cluster') plt.ylabel('Distortion') ``` 9. 使用BIRCH算法对iris进行了聚类,可以使用以下代码将同一类中的前两维用相同的颜色画出来: ```python from sklearn.cluster import Birch birch = Birch(n_clusters=3) birch.fit(iris.data) plt.scatter(iris.data[birch.labels_==0, 0], iris.data[birch.labels_==0, 1], c='blue') plt.scatter(iris.data[birch.labels_==1, 0], iris.data[birch.labels_==1, 1], c='red') plt.scatter(iris.data[birch.labels_==2, 0], iris.data[birch.labels_==2, 1], c='green') plt.xlabel('Sepal length') plt.ylabel('Sepal width') plt.show() ``` 10. 使用DBSCAN算法对iris进行了聚类,可以使用以下代码将同一类中的前两维用相同的颜色画出来: ```python from sklearn.cluster import DBSCAN dbscan = DBSCAN(eps=0.5, min_samples=5) dbscan.fit(iris.data) plt.scatter(iris.data[dbscan.labels_==0, 0], iris.data[dbscan.labels_==0, 1], c='blue') plt.scatter(iris.data[dbscan.labels_==1, 0], iris.data[dbscan.labels_==1, 1], c='red') plt.scatter(iris.data[dbscan.labels_==2, 0], iris.data[dbscan.labels_==2, 1], c='green') plt.xlabel('Sepal length') plt.ylabel('Sepal width') plt.show() ```

相关推荐

import numpy as np import matplotlib.pyplot as plt %matplotlib inline from sklearn.datasets import load_digits data, labels = load_digits(return_X_y=True) (n_samples, n_features), n_digits = data.shape, np.unique(labels).size print(f"# 类别数: {n_digits}; # 样本数: {n_samples}; # 特征数: {n_features}") print(data[:2]) from time import time from sklearn.pipeline import make_pipeline from sklearn.preprocessing import StandardScaler from sklearn.cluster import KMeans kmeans=KMeans(n_clusters=10, random_state=42) ### 创建管道并训练,记录训练时间 t0 = time() estimator = make_pipeline(StandardScaler(), kmeans).fit(data) fit_time = time() - t0 print("训练时间:", fit_time) ### 通过惯性(inertia)聚类的性能 print(estimator) print(estimator[-1].inertia_) result1={"fit-time":fit_time,"inertia:":estimator[-1].inertia_ } from sklearn.decomposition import PCA ### ??编程使用PCA分解,得到10个主成分,放到变量 components 中--------------------------- pca = PCA(n_components=10) components = pca.fit_transform(data) ###------------------------------------------------------------------------- ### 创建KMeas对象 kmeans=KMeans(n_clusters=10, init="k-means++", random_state=42) ### 创建管道并训练,记录训练时间 t0 = time() estimator = make_pipeline(StandardScaler(), kmeans).fit(data) fit_time = time() - t0 print("训练时间:", fit_time) ### 通过惯性(inertia)聚类的性能 print(estimator) print(estimator[-1].inertia_) result2={"fit-time":fit_time,"inertia:":estimator[-1].inertia_ } from sklearn.decomposition import PCA ### ??编程 选择保持 98%的信息的PCA模型,用名为pca的变量表示 ---------- pca = PCA(n_components=0.98) ###------------------------------------------------------------------- ###创建KMeas对象 kmeans=KMeans(n_clusters=10, random_state=42) ###??编程 创建一个 标准化+PCA降维+KMeas聚类的管道并训练,记录训练时间 t0 = time() estimator = make_pipeline(StandardScaler(), pca, kmeans).fit(data) ##增加pca预处理 fit_time = time() - t0 print("训练时间:", fit_time) ### 通过惯性(inertia)聚类的性能 print(estimator) print(estimator[-1].inertia_) result3={"fit-time":fit_time,"inertia:":estimator[-1].inertia_ }可以选择不同的KMeans的参数对digits进行聚类,比较实验结果,并选择一个针对此问题的最好模型

import numpy as np from sklearn.cluster import MiniBatchKMeans from sklearn.datasets import load_iris from sklearn import preprocessing import matplotlib.pyplot as plt from pylab import mpl from sklearn.cluster import KMeans from sklearn.metrics import silhouette_score from scipy.spatial.distance import cdist # 设置显示中文字体 mpl.rcParams["font.sans-serif"] = ["SimHei"] # 设置正常显示符号 mpl.rcParams["axes.unicode_minus"] = False np.random.seed(5) iris = load_iris() X = iris.data y = iris.target min_max_scaler = preprocessing.MinMaxScaler() X_minmax = min_max_scaler.fit_transform(X) batch_size = 15 num_cluster = 3 clf = MiniBatchKMeans(n_clusters=num_cluster, batch_size=batch_size, init='random') clf.fit(X_minmax) centers = clf.cluster_centers_ pre_clu = clf.labels_ vmarker = {0: '^', 1: 's', 2: 'D', } mValue = [vmarker[i] for i in pre_clu] for _marker, _x, _y in zip(mValue, X_minmax[:, 1], X_minmax[:, 2]): plt.scatter(_x, _y, marker=_marker,c='grey') plt.scatter(centers[:, 1], centers[:, 2], marker='*',s=200,c='black') plt.show() #手肘法则最佳k值 def sse_k(): K = range(1, 10) sse_result = [] for k in K: kmeans = KMeans(n_clusters=k) kmeans.fit(iris.data) sse_result.append(sum(np.min(cdist(iris.data, kmeans.cluster_centers_, 'euclidean'), axis=1)) / iris.data.shape[0]) plt.plot(K, sse_result, 'gx-') plt.xlabel('k') plt.ylabel(u'平均畸变程度') plt.title(u'肘部法则确定最佳的K值') plt.show() # 轮廓系统法最佳k值 def sc_k(): K = range(2, 10) score = [] for k in K: kmeans = KMeans(n_clusters=k) kmeans.fit(iris.data) score.append(silhouette_score(iris.data, kmeans.labels_, metric='euclidean')) plt.plot(K, score, 'r*-') plt.xlabel('k') plt.ylabel(u'轮廓系数') plt.title(u'轮廓系数确定最佳的K值') plt.show() sse_k() sc_k()

import time import numpy as np import matplotlib.pyplot as plt from sklearn.cluster import MiniBatchKMeans, KMeans from sklearn.metrics.pairwise import pairwise_distances_argmin from sklearn.datasets import make_blobs # Generate sample data np.random.seed(0) batch_size = 45 centers = [[1, 1], [-1, -1], [1, -1]] n_clusters = len(centers) X, labels_true = make_blobs(n_samples=3000, centers=centers, cluster_std=0.7) # Compute clustering with Means k_means = KMeans(init='k-means++', n_clusters=3, n_init=10) t0 = time.time() k_means.fit(X) t_batch = time.time() - t0 # Compute clustering with MiniBatchKMeans mbk = MiniBatchKMeans(init='k-means++', n_clusters=3, batch_size=batch_size, n_init=10, max_no_improvement=10, verbose=0) t0 = time.time() mbk.fit(X) t_mini_batch = time.time() - t0 # Plot result fig = plt.figure(figsize=(8, 3)) fig.subplots_adjust(left=0.02, right=0.98, bottom=0.05, top=0.9) colors = ['#4EACC5', '#FF9C34', '#4E9A06'] # We want to have the same colors for the same cluster from the # MiniBatchKMeans and the KMeans algorithm. Let's pair the cluster centers per # closest one. k_means_cluster_centers = k_means.cluster_centers_ order = pairwise_distances_argmin(k_means.cluster_centers_, mbk.cluster_centers_) mbk_means_cluster_centers = mbk.cluster_centers_[order] k_means_labels = pairwise_distances_argmin(X, k_means_cluster_centers) mbk_means_labels = pairwise_distances_argmin(X, mbk_means_cluster_centers) # KMeans for k, col in zip(range(n_clusters), colors): my_members = k_means_labels == k cluster_center = k_means_cluster_centers[k] plt.plot(X[my_members, 0], X[my_members, 1], 'w', markerfacecolor=col, marker='.') plt.plot(cluster_center[0], cluster_center[1], 'o', markerfacecolor=col, markeredgecolor='k', markersize=6) plt.title('KMeans') plt.xticks(()) plt.yticks(()) plt.show() 这段代码每一句在干什么

import random import numpy as np import matplotlib.pyplot as plt 生成随机坐标点 def generate_points(num_points): points = [] for i in range(num_points): x = random.uniform(-10, 10) y = random.uniform(-10, 10) points.append([x, y]) return points 计算欧几里得距离 def euclidean_distance(point1, point2): return np.sqrt(np.sum(np.square(np.array(point1) - np.array(point2)))) K-means算法实现 def kmeans(points, k, num_iterations=100): num_points = len(points) # 随机选择k个点作为初始聚类中心 centroids = random.sample(points, k) # 初始化聚类标签和距离 labels = np.zeros(num_points) distances = np.zeros((num_points, k)) for i in range(num_iterations): # 计算每个点到每个聚类中心的距离 for j in range(num_points): for l in range(k): distances[j][l] = euclidean_distance(points[j], centroids[l]) # 根据距离将点分配到最近的聚类中心 for j in range(num_points): labels[j] = np.argmin(distances[j]) # 更新聚类中心 for l in range(k): centroids[l] = np.mean([points[j] for j in range(num_points) if labels[j] == l], axis=0) return labels, centroids 生成坐标点 points = generate_points(100) 对点进行K-means聚类 k_values = [2, 3, 4] for k in k_values: labels, centroids = kmeans(points, k) # 绘制聚类结果 colors = [‘r’, ‘g’, ‘b’, ‘y’, ‘c’, ‘m’] for i in range(k): plt.scatter([points[j][0] for j in range(len(points)) if labels[j] == i], [points[j][1] for j in range(len(points)) if labels[j] == i], color=colors[i]) plt.scatter([centroid[0] for centroid in centroids], [centroid[1] for centroid in centroids], marker=‘x’, color=‘k’, s=100) plt.title(‘K-means clustering with k={}’.format(k)) plt.show()import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.cluster import KMeans from sklearn.datasets import load_iris 载入数据集 iris = load_iris() X = iris.data y = iris.target K-means聚类 kmeans = KMeans(n_clusters=3, random_state=0).fit(X) 可视化结果 plt.scatter(X[:, 0], X[:, 1], c=kmeans.labels_) plt.xlabel(‘Sepal length’) plt.ylabel(‘Sepal width’) plt.title(‘K-means clustering on iris dataset’) plt.show()对这个算法的结果用SSE,轮廓系数,方差比率准则,DBI几个指标分析

最新推荐

recommend-type

基于STM32通过PWM驱动直流电机

工程代码基于STM32F103C8T6,使用PWM输出驱动电机,电机驱动使用TB6612,通过按键控制电机速度,并且速度通过OLED显示屏进行显示 使用到的硬件:STM32F103C8T6最小系统板,四针脚OLED显示屏,直流电机,按键,TB6612电机驱动模块
recommend-type

最新微信文章编辑器排版工具程序源码.rar

最新微信文章编辑器排版工具程序源码.rar最新微信文章编辑器排版工具程序源码.rar最新微信文章编辑器排版工具程序源码.rar
recommend-type

RTL8188FU-Linux-v5.7.4.2-36687.20200602.tar(20765).gz

REALTEK 8188FTV 8188eus 8188etv linux驱动程序稳定版本, 支持AP,STA 以及AP+STA 共存模式。 稳定支持linux4.0以上内核。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章

![:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章](https://img-blog.csdnimg.cn/img_convert/69b98e1a619b1bb3c59cf98f4e397cd2.png) # 1. 目标检测算法概述 目标检测算法是一种计算机视觉技术,用于识别和定位图像或视频中的对象。它在各种应用中至关重要,例如自动驾驶、视频监控和医疗诊断。 目标检测算法通常分为两类:两阶段算法和单阶段算法。两阶段算法,如 R-CNN 和 Fast R-CNN,首先生成候选区域,然后对每个区域进行分类和边界框回归。单阶段算法,如 YOLO 和 SSD,一次性执行检
recommend-type

info-center source defatult

这是一个 Cisco IOS 命令,用于配置 Info Center 默认源。Info Center 是 Cisco 设备的日志记录和报告工具,可以用于收集和查看设备的事件、警报和错误信息。该命令用于配置 Info Center 默认源,即设备的默认日志记录和报告服务器。在命令行界面中输入该命令后,可以使用其他命令来配置默认源的 IP 地址、端口号和协议等参数。
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

:YOLO目标检测算法的挑战与机遇:数据质量、计算资源与算法优化,探索未来发展方向

![:YOLO目标检测算法的挑战与机遇:数据质量、计算资源与算法优化,探索未来发展方向](https://img-blog.csdnimg.cn/7e3d12895feb4651b9748135c91e0f1a.png?x-oss-process=image/watermark,type_ZHJvaWRzYW5zZmFsbGJhY2s,shadow_50,text_Q1NETiBA5rKJ6YaJ77yM5LqO6aOO5Lit,size_20,color_FFFFFF,t_70,g_se,x_16) # 1. YOLO目标检测算法简介 YOLO(You Only Look Once)是一种
recommend-type

tinyplay /storage/BFEF-19EE/wav.wav -D 0 cannot open device 0 for card 0 Unable to open PCM device 0.

这个错误信息可能是由于无法打开PCM设备0导致的。请检查以下几个方面,以便解决这个问题: 1. 你是否有足够的权限来访问该设备? 2. 检查一下PCM设备0是否已经被其他程序占用了。 3. 确认一下你的PCM设备是否已经被正确地配置和设置。 4. 检查一下你的系统是否有足够的内存和资源来支持你的PCM设备。 如果以上几个方面都检查过了,仍然无法解决问题,你可以尝试使用其他的设备号或者采用其他的操作系统来测试这个问题。