强化学习中的q-learing和深度学习结合的代码
时间: 2023-05-09 22:03:10 浏览: 227
基于Q-Learing的路径规划MATLAB仿真系统自测
5星 · 资源好评率100%
强化学习中的Q-learning算法是一种基于计算打分的学习方法,可以优化决策和行动。将Q-learning算法与深度学习相结合可以提高模型的性能和准确度。
一种常见的结合方式是使用深度神经网络(DNN)作为Q-table的替代品来保存Q-values,这种方法被称为Deep Q-Networks(DQN)。DQN将状态空间映射到一个高维空间中,并且使用神经网络的高容量、非线性及端到端学习来获得更准确的Q-values。
下面是一个简单的DQN的实现:
1. 首先是定义神经网络模型
```
class DeepQNetwork:
def __init__(self, observation_space, action_space, learning_rate=0.01,
gamma=0.9, epsilon=0.9, epsilon_min=0.01, epsilon_decay=0.995):
self.observation_space = observation_space
self.action_space = action_space
self.learning_rate = learning_rate
self.gamma = gamma
self.epsilon = epsilon
self.epsilon_min = epsilon_min
self.epsilon_decay = epsilon_decay
self.memory = deque(maxlen=2000)
self.model = self.build_model()
def build_model(self):
model = Sequential()
model.add(Dense(24, input_dim=self.observation_space, activation='relu'))
model.add(Dense(24, activation='relu'))
model.add(Dense(self.action_space, activation='linear'))
model.compile(loss='mse', optimizer=Adam(lr=self.learning_rate))
return model
```
2.定义算法过程
```
def run_dqn(agent, env, episodes=1000, batch_size=32):
scores = []
for ep in range(episodes):
state = env.reset()
score = 0
for time_step in range(500):
action = agent.act(state)
next_state, reward, done, info = env.step(action)
agent.remember(state, action, reward, next_state, done)
if len(agent.memory) > batch_size:
agent.replay(batch_size)
score += reward
state = next_state
if done:
break
agent.update_epsilon_decay()
scores.append(score)
print('Episode: {} Score: {} Epsilon: {:.4f}'.format(ep,score, agent.epsilon))
return scores
```
3. 定义训练过程
```
dqn_agent = DeepQNetwork(env.observation_space.shape[0], env.action_space.n,)
scores = run_dqn(dqn_agent, env)
```
通过以上代码实现了深度学习和Q-learning的结合,将两种算法相辅相成,取长补短,创造出更高效准确的算法模型。
阅读全文