def __init__(self, kernel_size=5, base_dim=32, depths=[4, 4, 4, 4, 4, 4, 4], conv_layer=ConvLayer, norm_layer=nn.BatchNorm2d, gate_act=nn.Sigmoid, fusion_layer=SKFusion): super(gUNet, self).__init__()
时间: 2023-02-28 11:29:25 浏览: 169
我是ChatGPT,一个由OpenAI训练的大型语言模型。 我明白了。我理解了您正在尝试建立一个gUNet,其中内核大小为5,基本维度为32,深度为[4,4,4,4,4,4,4],卷积层为ConvLayer,规范层为nn.BatchNorm2d,门激活为nn.Sigmoid,融合层为SKFusion。
相关问题
class HorNet(nn.Module): # HorNet # hornet by iscyy/yoloair def __init__(self, index, in_chans, depths, dim_base, drop_path_rate=0.,layer_scale_init_value=1e-6, gnconv=[ partial(gnconv, order=2, s=1.0/3.0), partial(gnconv, order=3, s=1.0/3.0), partial(gnconv, order=4, s=1.0/3.0), partial(gnconv, order=5, s=1.0/3.0), # GlobalLocalFilter ], ): super().__init__() dims = [dim_base, dim_base * 2, dim_base * 4, dim_base * 8] self.index = index self.downsample_layers = nn.ModuleList() # stem and 3 intermediate downsampling conv layers hornet by iscyy/air stem = nn.Sequential( nn.Conv2d(in_chans, dims[0], kernel_size=4, stride=4), HorLayerNorm(dims[0], eps=1e-6, data_format="channels_first") ) self.downsample_layers.append(stem) for i in range(3): downsample_layer = nn.Sequential( HorLayerNorm(dims[i], eps=1e-6, data_format="channels_first"), nn.Conv2d(dims[i], dims[i+1], kernel_size=2, stride=2), ) self.downsample_layers.append(downsample_layer) self.stages = nn.ModuleList() # 4 feature resolution stages, each consisting of multiples bind residual blocks dummy dp_rates=[x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] if not isinstance(gnconv, list): gnconv = [gnconv, gnconv, gnconv, gnconv] else: gnconv = gnconv assert len(gnconv) == 4 cur = 0 for i in range(4): stage = nn.Sequential( *[HorBlock(dim=dims[i], drop_path=dp_rates[cur + j], layer_scale_init_value=layer_scale_init_value, gnconv=gnconv[i]) for j in range(depths[i])]# hornet by iscyy/air ) self.stages.append(stage) cur += depths[i] self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, (nn.Conv2d, nn.Linear)): nn.init.trunc_normal_(m.weight, std=.02) nn.init.constant_(m.bias, 0) def forward(self, x): x = self.downsample_layers[self.index](x) x = self.stages[self.index](x) return x
这是一个名为HorNet的网络类,它继承自nn.Module。HorNet是一个用于目标检测的神经网络,具体实现了一个由ISCYY/YOLOAIR开发的算法。该网络包括主干网络和特征提取网络。
在__init__函数中,HorNet接受一些参数,包括网络输入通道数、网络深度、特征维度等等。其中主干网络是由几个下采样层(downsample_layers)组成,用于将输入的图片进行缩小和特征提取。特征提取网络是由若干个HorBlock组成的,每个HorBlock包括一些卷积层和归一化层,用于提取特征和进行特征的降维和升维。
在forward函数中,HorNet首先通过下采样层将输入的图像进行缩小,然后通过特征提取网络进行特征提取和降维,最终输出特征图。这个特征图可以用于进行目标检测的后续操作,比如目标框预测和类别分类等。
for i in range(self.stage_num): self.layers.append(BasicLayer(dim=embed_dims[i], depth=depths[i], net_depth=net_depth, kernel_size=kernel_size, conv_layer=conv_layer, norm_layer=norm_layer, gate_act=gate_act))解释每一段代码
这段代码是一个循环语句,其中self.stage_num是循环的次数。在每次循环中,会调用BasicLayer类,并将其实例化为一个对象,该对象的各个属性值由参数指定。具体来说,dim表示嵌入维度,depth表示层数,net_depth表示网络深度,kernel_size表示卷积核大小,conv_layer表示卷积层类型,norm_layer表示归一化层类型,gate_act表示门控激活函数类型。每次循环结束后,将该对象添加到layers列表中。
阅读全文