def ols_model(df, y, variable_lst=''): if variable_lst == '': reserve_lst = [y] else: reserve_lst = [y] for item in variable_lst: reserve_lst.append(item) print(reserve_lst) df_reserve = df[reserve_lst] df_reserve_nonzero = df_reserve.dropna(axis=0) df_reserve_nonzero.info(verbose=True, null_counts=True) expre = f'{y} ~ ' expre += ' + '.join(variable_lst) print(expre) regout = ols(expre, df).fit() print(regout.summary2())
时间: 2024-04-10 07:30:42 浏览: 182
orthogonal least squares.zip_GP-OLS_The Signal_sparse_sparse ols
这是一个定义OLS(Ordinary Least Squares)回归模型的函数。它的输入参数包括一个DataFrame `df`,一个表示因变量的字符串 `y`,以及一个可选的自变量列表 `variable_lst`。
函数首先判断 `variable_lst` 是否为空。如果为空,则将 `y` 添加到 `reserve_lst` 列表中。如果不为空,则将 `y` 添加到 `reserve_lst` 列表中,并遍历 `variable_lst` 中的每个元素,将其添加到 `reserve_lst` 中。
然后,函数打印出 `reserve_lst` 列表的内容,并从 `df` 中选取包含 `reserve_lst` 列表中的列的子数据集 `df_reserve`。接着,删除 `df_reserve` 中包含缺失值的行,得到一个没有缺失值的子数据集 `df_reserve_nonzero`。使用 `info()` 方法打印出 `df_reserve_nonzero` 的信息,包括详细的描述和缺失值的计数。
接下来,函数构建回归模型的公式字符串 `expre`,以及使用 `ols()` 方法基于该公式和整个数据集 `df` 进行回归拟合。最后,函数打印出回归结果的摘要信息。
请注意,函数中使用了未定义的 `ols()` 方法和 `summary2()` 方法,可能需要进一步导入相关的库和模块才能正常运行。
阅读全文