from sklearn import linear_model ols=linear_model.LinearRegression().fit(xtrain,ytrain) ols.score(xtest,ytest) Out[108]: -1.3764402122285869e+26说明什么

时间: 2024-02-29 17:53:42 浏览: 22
这段代码中,首先使用sklearn库中的linear_model模块导入线性回归模型,然后使用其中的LinearRegression()函数初始化一个线性回归模型,并使用fit()函数拟合训练集数据xtrain和ytrain。最后使用score()函数评估该模型在测试集数据xtest和ytest上的预测准确率(即R²),得到的结果为-1.3764402122285869e+26。 这个结果说明模型在测试集上的预测效果非常差,甚至比随机猜测还要差,可能是因为模型过拟合了训练集数据,或者数据集中存在异常值或噪声,导致模型无法很好地捕捉数据的规律。需要进一步分析和调整模型,或者重新清洗数据集以提高模型的准确率。
相关问题

from sklearn import linear_model ols=linear_model.LinearRegression().fit(xtrain,ytrain) ols.coef_ ypred=ols.predict(xtest) print(ols.score(xtrain,ytrain)) mean_squared_error(ytest,ypred)**0.5

这是一个使用 scikit-learn 库中的线性回归模型进行训练和预测的 Python 代码。具体来说,它执行以下操作: 1. 导入 scikit-learn 库中的 linear_model 模块。 2. 创建一个 LinearRegression 类的实例 ols。 3. 使用 fit() 方法拟合模型,其中 xtrain 和 ytrain 是训练集的特征和标签数据。 4. 获取模型的系数(coef_)。 5. 使用 predict() 方法对测试集(xtest)进行预测,得到预测值 ypred。 6. 计算模型在训练集上的 R² 得分(score() 方法)。 7. 计算预测值 ypred 与测试集标签 ytest 之间的均方根误差(mean_squared_error() 函数)。 总的来说,这段代码用于构建一个简单的线性回归模型,并使用它对测试集进行预测和评估。

bike_=bike[['atemp', 'humidity', 'windspeed', 'season','count','season','holiday','workingday','weather']] bike_=pd.get_dummies(bike_,columns=['season','holiday','workingday','weather']) train=bike_.sample(frac=0.7) test=bike_[~bike_.index.isin(train.index)] xtrain,ytrain=train.drop('count',axis=1),train['count'] xtest,ytest=test.drop( 'count',axis=1),test['count'] from sklearn import linear_model##用于线性回归分析的模块 ols=linear_model.LinearRegression().fit(xtrain,ytrain)#linear_model是模块,这个模块下的类叫linearregression,类下有个函数叫fit ols.coef_ model = LinearRegression() # 训练模型 model.fit(xtrain,ytrain) # 预测 ypred=ols.predict(xtest) print(ols.score(xtrain,ytrain))怎么生成回归的那张表

这段代码是用来进行线性回归分析的,它并没有生成回归的表。但是,我们可以通过使用`matplotlib`库来绘制回归图,以便更好地理解回归分析的结果。下面是用`matplotlib`库绘制回归图的代码示例: ``` import matplotlib.pyplot as plt # 绘制预测值与真实值的散点图 plt.scatter(ytest, ypred) # 绘制一条直线表示理论上的完美拟合 plt.plot([ytest.min(), ytest.max()], [ytest.min(), ytest.max()], 'k--', lw=4) # 添加图表标题和坐标轴标签 plt.xlabel('True Values') plt.ylabel('Predictions') # 显示图表 plt.show() ``` 这段代码将会生成一张散点图,其中横轴表示真实值,纵轴表示预测值。理论上,如果模型完美拟合,所有的点将会落在直线上方。如果模型的预测效果很差,那么这些点将会分散在图表中。

相关推荐

import pandas as pd import numpy as np from sklearn.decomposition import PCA from sklearn.preprocessing import StandardScaler import matplotlib.pyplot as plt # 读取数据 data = pd.read_csv('D:/pythonProject/venv/BostonHousing2.csv') # 提取前13个指标的数据 X = data.iloc[:, 5:18].values # 数据标准化 scaler = StandardScaler() X_scaled = scaler.fit_transform(X) # 主成分分析 pca = PCA() X_pca = pca.fit_transform(X_scaled) # 特征值和特征向量 eigenvalues = pca.explained_variance_ eigenvectors = pca.components_.T # 碎石图 variance_explained = np.cumsum(eigenvalues / np.sum(eigenvalues)) plt.plot(range(6, 19), variance_explained, marker='o') plt.xlabel('Number of Components') plt.ylabel('Cumulative Proportion of Variance Explained') plt.title('Scree Plot') plt.show() # 选择主成分个数 n_components = np.sum(variance_explained <= 0.95) + 1 # 前2个主成分的载荷图 loadings = pd.DataFrame(eigenvectors[:, 0:2], columns=['PC1', 'PC2'], index=data.columns[0:13]) plt.figure(figsize=(10, 6)) plt.scatter(loadings['PC1'], loadings['PC2'], alpha=0.7) for i, feature in enumerate(loadings.index): plt.text(loadings['PC1'][i], loadings['PC2'][i], feature) plt.xlabel('PC1') plt.ylabel('PC2') plt.title('Loading Plot') plt.grid() plt.show() # 主成分得分图 scores = pd.DataFrame(X_pca[:, 0:n_components], columns=['PC{}'.format(i+1) for i in range(n_components)]) plt.figure(figsize=(10, 6)) plt.scatter(scores['PC1'], scores['PC2'], alpha=0.7) for i, label in enumerate(data['MEDV']): plt.text(scores['PC1'][i], scores['PC2'][i], label) plt.xlabel('PC1') plt.ylabel('PC2') plt.title('Scores Plot') plt.grid() plt.show() # 综合评估和排序 data['PC1_score'] = X_pca[:, 0] sorted_data = data.sort_values(by='PC1_score') # 主成分回归模型 from sklearn.linear_model import LinearRegression Y = data['MEDV'].values.reshape(-1, 1) X_pca_regression = X_pca[:, 0].reshape(-1, 1) regression_model = LinearRegression() regression_model.fit(X_pca_regression, Y) # 回归方程 intercept = regression_model.intercept_[0] slope = regression_model.coef_[0][0] equation = "MEDV = {:.2f} + {:.2f} * PC1".format(intercept, slope) print("Regression Equation:", equation) # 最小二乘估计结果 from statsmodels.api import OLS X_const = np.concatenate((np.ones((506, 1)), X_pca_regression), axis=1) ols_model = OLS(Y, X_const).fit() print("OLS Regression Summary:") print(ols_model.summary())

最新推荐

recommend-type

夜间遥感影像数据(汇总).docx

92-13年的夜间遥感影像数据,DMSP_OLS夜间灯光数据,及VIIRS_NPP的2017年每月的夜间灯光数据汇总,方便进行城市化进程,扶贫地区演变等应用的分析和预测。
recommend-type

JavaScript_catvod的开放版本.zip

JavaScript
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

可见光定位LED及其供电硬件具体型号,广角镜头和探测器,实验设计具体流程步骤,

1. 可见光定位LED型号:一般可使用5mm或3mm的普通白色LED,也可以选择专门用于定位的LED,例如OSRAM公司的SFH 4715AS或Vishay公司的VLMU3500-385-120。 2. 供电硬件型号:可以使用常见的直流电源供电,也可以选择专门的LED驱动器,例如Meanwell公司的ELG-75-C或ELG-150-C系列。 3. 广角镜头和探测器型号:一般可采用广角透镜和CMOS摄像头或光电二极管探测器,例如Omron公司的B5W-LA或Murata公司的IRS-B210ST01。 4. 实验设计流程步骤: 1)确定实验目的和研究对象,例如车辆或机器人的定位和导航。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

解释这行代码 c = ((double)rand() / RAND_MAX) * (a + b - fabs(a - b)) + fabs(a - b);

这行代码的作用是随机生成一个浮点数,范围在 a 和 b 之间(包括 a 和 b)。 其中,`rand()` 函数是 C 语言标准库中的一个函数,用于生成一个伪随机整数。`RAND_MAX` 是一个常量,它表示 `rand()` 函数生成的随机数的最大值。 因此,`(double)rand() / RAND_MAX` 表示生成的随机数在 [0, 1] 之间的浮点数。 然后,将这个随机数乘上 `(a - b) - fabs(a - b)`,再加上 `fabs(a - b)`。 `fabs(a - b)` 是 C 语言标准库中的一个函数,用于计算一个数的绝对值。因此,`fabs(a - b)