seq_in_index

时间: 2023-10-08 20:12:21 浏览: 50
seq_in_index是SHOW INDEX语句返回的一个字段,用于表示索引中的列的序号。对于组合索引,seq_in_index表示列在索引中的位置。\[1\]在示例中,seq_in_index列的值可以用来确定联合索引中每个列的顺序。例如,idx_category_price索引中,seq_in_index为1的列是category,seq_in_index为2的列是price。\[2\] #### 引用[.reference_title] - *1* *2* *3* [MySQL查看索引语句:SHOW INDEX 详细讲解](https://blog.csdn.net/jiayoudangdang/article/details/130387723)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
相关问题

解释以下代码的意义def decode_sequence(input_seq): # 将输入编码为状态向量。 states_value = encoder_model.predict(input_seq) # 生成长度为 1 的空目标序列。 target_seq = np.zeros((1, 1, num_decoder_tokens)) # 用起始字符填充目标序列的第一个字符。 target_seq[0, 0, target_token_index['\t']] = 1. # 一批序列的采样循环 # (为了简化,这里我们假设一批大小为 1)。 stop_condition = False decoded_sentence = '' while not stop_condition: output_tokens, h, c = decoder_model.predict( [target_seq] + states_value) # 采样一个 token sampled_token_index = np.argmax(output_tokens[0, -1, :]) sampled_char = reverse_target_char_index[sampled_token_index] decoded_sentence += sampled_char # 退出条件:达到最大长度或找到停止符。 if (sampled_char == '\n' or len(decoded_sentence) > max_decoder_seq_length): stop_condition = True # 更新目标序列(长度为 1)。 target_seq = np.zeros((1, 1, num_decoder_tokens)) target_seq[0, 0, sampled_token_index] = 1. # 更新状态 states_value = [h, c] return decoded_sentence for seq_index in range(100): # 抽取一个序列(训练集的一部分)进行解码。 input_seq = encoder_input_data[seq_index: seq_index + 1] decoded_sentence = decode_sequence(input_seq) print('-') print('Input sentence:', input_texts[seq_index]) print('Decoded sentence:', decoded_sentence)

这段代码的作用是对输入序列进行解码,生成一个对应的输出序列。具体的步骤如下: 1. 首先,使用编码器模型对输入序列进行编码,得到一个状态向量states_value。 2. 然后,生成一个长度为1的空目标序列target_seq,并用起始字符填充目标序列的第一个字符。 3. 接着,进入采样循环,循环中每次将目标序列和状态向量作为输入,使用解码器模型得到输出序列和新的状态向量。 4. 在每次采样中,从输出序列中选择概率最大的token作为采样的token,将其对应的字符添加到已解码的句子decoded_sentence中。 5. 继续循环直到遇到停止符或达到最大长度为止。 6. 最后,返回已解码的句子。 在代码的for循环中,对训练集中的前100个序列进行解码,并将输入序列和解码后的输出序列打印出来。

编写C程序,模拟“理想型淘汰算法(OPT)”页面置换算法。计算缺页次数并返回。 注意 不要修改函数名、函数返回类型、参数个数、参数名和参数类型。 函数输入参数说明: page_seq:访问页面序列 seq_len: 访问页面序列长度 mem_page_num:最大分配内存页面数 函数返回值:缺页次数 空函数 int opt_missing_page_num(int* page_seq, int seq_len, int mem_page_num){ }int mem_page_num = 3;//分配内存页面数 int seq_len = 17;//访问页面序列长度 int page_seq[] = { 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 1, 2, 0, 1 };//访问页面序列 //OPT int result = opt_missing_page_num(page_seq, seq_len, mem_page_num); printf("%d", result); return 0;

下面是使用C语言编写的“理想型淘汰算法(OPT)”页面置换算法的完整代码,可以计算出缺页次数并返回: ``` #include <stdio.h> #include <stdlib.h> #include <stdbool.h> int opt_missing_page_num(int* page_seq, int seq_len, int mem_page_num){ int missing_page_num = 0; // 缺页次数 int* mem_page_seq = (int*)malloc(mem_page_num * sizeof(int)); // 内存页面序列 bool* is_in_mem = (bool*)malloc(seq_len * sizeof(bool)); // 判断页面是否在内存中 int* next_use_time = (int*)malloc(mem_page_num * sizeof(int)); // 下一次使用时间 int i, j, k, max_k; for (i = 0; i < seq_len; i++) { is_in_mem[i] = false; // 默认页面不在内存中 } for (i = 0; i < mem_page_num; i++) { mem_page_seq[i] = -1; // 内存页面序列初始为空 next_use_time[i] = -1; // 下一次使用时间初始为-1(即不再使用) } for (i = 0; i < seq_len; i++) { int cur_page = page_seq[i]; if (is_in_mem[cur_page]) { // 页面已在内存中 continue; } missing_page_num++; // 缺页次数加一 bool find_replace = false; // 是否找到可以替换的页面 for (j = 0; j < mem_page_num; j++) { if (mem_page_seq[j] == -1) { // 内存页面序列中有空位,直接替换 mem_page_seq[j] = cur_page; next_use_time[j] = -1; is_in_mem[cur_page] = true; find_replace = true; break; } } if (!find_replace) { // 内存页面序列已满,需要淘汰一个页面 for (j = 0; j < mem_page_num; j++) { int cur_mem_page = mem_page_seq[j]; bool find_next_use = false; // 是否找到下一次使用当前页面的时间 for (k = i + 1; k < seq_len; k++) { if (page_seq[k] == cur_mem_page) { next_use_time[j] = k; find_next_use = true; break; } } if (!find_next_use) { // 当前页面在后面不再使用 max_k = k; break; } } if (j == mem_page_num) { // 所有页面都在后面仍会使用 max_k = seq_len; } int replace_page = mem_page_seq[0]; int replace_index = 0; for (j = 1; j < mem_page_num; j++) { // 找到下一次最晚使用的页面 int cur_mem_page = mem_page_seq[j]; if (next_use_time[j] > next_use_time[replace_index]) { replace_page = cur_mem_page; replace_index = j; } } mem_page_seq[replace_index] = cur_page; // 替换页面 next_use_time[replace_index] = max_k; is_in_mem[cur_page] = true; } } free(mem_page_seq); free(is_in_mem); free(next_use_time); return missing_page_num; } int main() { int mem_page_num = 3; // 分配内存页面数 int seq_len = 17; // 访问页面序列长度 int page_seq[] = { 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 1, 2, 0, 1 }; // 访问页面序列 int result = opt_missing_page_num(page_seq, seq_len, mem_page_num); printf("%d", result); return 0; } ```

相关推荐

def convert_midi(fp, _seq_len): notes_list = [] stream = converter.parse(fp) partitions = instrument.partitionByInstrument(stream) # print([(part.getInstrument().instrumentName, len(part.flat.notes)) for part in partitions]) # 获取第一个小节(Measure)中的节拍数 _press_time_dict = defaultdict(list) partition = None for part_sub in partitions: if part_sub.getInstrument().instrumentName.lower() == 'piano' and len(part_sub.flat.notes) > 0: partition = part_sub continue if partition is None: return None, None for _note in partition.flat.notes: _duration = str(_note.duration.quarterLength) if isinstance(_note, NoteClass.Note): _press_time_dict[str(_note.offset)].append([str(_note.pitch), _duration]) notes_list.append(_note) if isinstance(_note, ChordClass.Chord): press_list = _press_time_dict[str(_note.offset)] notes_list.append(_note) for sub_note in _note.notes: press_list.append([str(sub_note.pitch), _duration]) if len(_press_time_dict) == _seq_len: break _items = list(_press_time_dict.items()) _items = sorted(_items, key=lambda t:float(Fraction(t[0])))[:_seq_len] if len(_items) < _seq_len: return None,None last_step = Fraction(0,1) notes = np.zeros(shape=(_seq_len,len(notes_vocab),len(durations_vocab)),dtype=np.float32) steps = np.zeros(shape=(_seq_len,len(offsets_vocab)),dtype=np.float32) for idx,(cur_step,entities) in enumerate(_items): cur_step = Fraction(cur_step) diff_step = str(cur_step - last_step) if diff_step in offsets_vocab: steps[idx,offsets_vocab.index(diff_step)] = 1. last_step = cur_step else: steps[idx,offsets_vocab.index('0')] = 1. for pitch,quarterLen in entities: notes[idx,notes_vocab.index(pitch),durations_vocab.index(quarterLen if quarterLen in durations_vocab else '0')] = 1. notes = notes.reshape((seq_len,-1)) inputs = np.concatenate([notes,steps],axis=-1) return inputs,notes_list

import torchfrom transformers import BertTokenizer, BertModel# 加载Bert预训练模型和tokenizermodel = BertModel.from_pretrained('bert-base-chinese')tokenizer = BertTokenizer.from_pretrained('bert-base-chinese')# 微博文本和种子词text = '今天天气真好,心情非常愉快!'seeds = ['天气', '心情', '愉快']# 将微博文本和种子词转换为Bert输入格式inputs = tokenizer.encode_plus(text, add_special_tokens=True, return_tensors='pt')seed_inputs = tokenizer.encode_plus(seeds, add_special_tokens=True, return_tensors='pt', padding=True)# 使用Bert模型获取微博文本和种子词的词向量with torch.no_grad(): text_embeddings = model(inputs['input_ids'], attention_mask=inputs['attention_mask'])[0] # [1, seq_len, hidden_size] seed_embeddings = model(seed_inputs['input_ids'], attention_mask=seed_inputs['attention_mask'])[0] # [batch_size, seq_len, hidden_size]# 计算种子词和微博文本中所有词语的余弦相似度text_embeddings = text_embeddings.squeeze(0) # [seq_len, hidden_size]seed_embeddings = seed_embeddings.mean(dim=1) # [batch_size, seq_len, hidden_size] -> [batch_size, hidden_size]cosine_similarities = torch.matmul(text_embeddings, seed_embeddings.transpose(0, 1)) # [seq_len, batch_size]# 获取相似度最高的词语similar_words = []for i in range(len(seeds)): seed_similarities = cosine_similarities[i, :].tolist() max_sim_idx = seed_similarities.index(max(seed_similarities)) similar_word = tokenizer.convert_ids_to_tokens(inputs['input_ids'][0][max_sim_idx].item()) similar_words.append(similar_word)print(similar_words) 上述修改后的代码输出全是['[CLS]', '[CLS]', '[CLS]'],这不是我想要的结果啊,我想要的是微博文本的词语和种子词很相似的所有词语,而不是bert自动添加的特殊标记符,该怎么办

import torch from transformers import BertTokenizer, BertModel # 加载Bert预训练模型和tokenizer model = BertModel.from_pretrained('bert-base-chinese') tokenizer = BertTokenizer.from_pretrained('bert-base-chinese') # 微博文本和种子词 text = '今天天气真好,心情非常愉快!' seeds = ['天气', '心情', '愉快'] # 将微博文本和种子词转换为Bert输入格式 inputs = tokenizer.encode_plus(text, add_special_tokens=True, return_tensors='pt') seed_inputs = tokenizer.encode_plus(seeds, add_special_tokens=True, return_tensors='pt', padding=True) # 使用Bert模型获取微博文本和种子词的词向量 with torch.no_grad(): text_embeddings = model(inputs['input_ids'], attention_mask=inputs['attention_mask'])[0] # [1, seq_len, hidden_size] seed_embeddings = model(seed_inputs['input_ids'], attention_mask=seed_inputs['attention_mask'])[0] # [batch_size, seq_len, hidden_size] # 计算种子词和微博文本中所有词语的余弦相似度 text_embeddings = text_embeddings.squeeze(0) # [seq_len, hidden_size] seed_embeddings = seed_embeddings.mean(dim=1) # [batch_size, hidden_size] -> [batch_size, 1, hidden_size] -> [batch_size, hidden_size] cosine_similarities = torch.matmul(text_embeddings, seed_embeddings.transpose(0, 1)) # [seq_len, batch_size] # 获取相似度最高的词语 similar_words = [] for i in range(len(seeds)): seed_similarities = cosine_similarities[:, i].tolist() max_sim_idx = seed_similarities.index(max(seed_similarities)) similar_word = tokenizer.convert_ids_to_tokens(inputs['input_ids'][0][max_sim_idx].item()) similar_words.append(similar_word) print(similar_words) 能不能详细讲解一下上述这段代码的每行代码的意思,为什么这样用,比如用到的函数是什么意思,生成的变量是什么类型,能列举吗?而且这段代码中后面的这行代码seed_similarities = cosine_similarities[:, i].tolist()报错了,报错显示Traceback (most recent call last): File "E:/PyCharm Community Edition 2020.2.2/Project/WordDict/cos_similarity.py", line 35, in <module> seed_similarities = cosine_similarities[:, i].tolist() IndexError: index 1 is out of bounds for dimension 1 with size 1 能不能帮我解释一下为什么错,解释一下该怎么修改,并给出修改后的代码呢?

优化代码:def crossSol(model): sol_list=copy.deepcopy(model.sol_list) model.sol_list=[] while True: f1_index = random.randint(0, len(sol_list) - 1) f2_index = random.randint(0, len(sol_list) - 1) if f1_index!=f2_index: f1 = copy.deepcopy(sol_list[f1_index]) f2 = copy.deepcopy(sol_list[f2_index]) if random.random() <= model.pc: cro1_index=int(random.randint(0,len(model.demand_id_list)-1)) cro2_index=int(random.randint(cro1_index,len(model.demand_id_list)-1)) new_c1_f = [] new_c1_m=f1.node_id_list[cro1_index:cro2_index+1] new_c1_b = [] new_c2_f = [] new_c2_m=f2.node_id_list[cro1_index:cro2_index+1] new_c2_b = [] for index in range(len(model.demand_id_list)):#遍历长度 if len(new_c1_f)<cro1_index: if f2.node_id_list[index] not in new_c1_m: new_c1_f.append(f2.node_id_list[index]) else: if f2.node_id_list[index] not in new_c1_m: new_c1_b.append(f2.node_id_list[index]) for index in range(len(model.demand_id_list)): if len(new_c2_f)<cro1_index: if f1.node_id_list[index] not in new_c2_m: new_c2_f.append(f1.node_id_list[index]) else: if f1.node_id_list[index] not in new_c2_m: new_c2_b.append(f1.node_id_list[index]) new_c1=copy.deepcopy(new_c1_f) new_c1.extend(new_c1_m) new_c1.extend(new_c1_b) f1.nodes_seq=new_c1 new_c2=copy.deepcopy(new_c2_f) new_c2.extend(new_c2_m) new_c2.extend(new_c2_b) f2.nodes_seq=new_c2 model.sol_list.append(copy.deepcopy(f1)) model.sol_list.append(copy.deepcopy(f2)) else: model.sol_list.append(copy.deepcopy(f1)) model.sol_list.append(copy.deepcopy(f2)) if len(model.sol_list)>model.popsize: break

import torch from transformers import BertTokenizer, BertModel # 加载Bert预训练模型和tokenizer model = BertModel.from_pretrained('bert-base-chinese') tokenizer = BertTokenizer.from_pretrained('bert-base-chinese') # 微博文本和种子词 text = '今天天气真好,心情非常愉快!' seeds = ['天气', '心情', '愉快'] # 将微博文本和种子词转换为Bert输入格式 inputs = tokenizer.encode_plus(text, add_special_tokens=True, return_tensors='pt') seed_inputs = tokenizer.encode_plus(seeds, add_special_tokens=True, return_tensors='pt', padding=True) # 使用Bert模型获取微博文本和种子词的词向量 with torch.no_grad(): text_embeddings = model(inputs['input_ids'], attention_mask=inputs['attention_mask'])[0] # [1, seq_len, hidden_size] seed_embeddings = model(seed_inputs['input_ids'], attention_mask=seed_inputs['attention_mask'])[0] # [batch_size, seq_len, hidden_size] # 计算种子词和微博文本中所有词语的余弦相似度 text_embeddings = text_embeddings.squeeze(0) # [seq_len, hidden_size] seed_embeddings = seed_embeddings.mean(dim=1) # [batch_size, hidden_size] -> [batch_size, 1, hidden_size] -> [batch_size, hidden_size] cosine_similarities = torch.matmul(text_embeddings, seed_embeddings.transpose(0, 1)) # [seq_len, batch_size] # 获取相似度最高的词语 similar_words = [] for i in range(len(seeds)): seed_similarities = cosine_similarities[:, i].tolist() max_sim_idx = seed_similarities.index(max(seed_similarities)) similar_word = tokenizer.convert_ids_to_tokens(inputs['input_ids'][0][max_sim_idx].item()) similar_words.append(similar_word) print(similar_words)

帮我为下面的代码加上注释:class SimpleDeepForest: def __init__(self, n_layers): self.n_layers = n_layers self.forest_layers = [] def fit(self, X, y): X_train = X for _ in range(self.n_layers): clf = RandomForestClassifier() clf.fit(X_train, y) self.forest_layers.append(clf) X_train = np.concatenate((X_train, clf.predict_proba(X_train)), axis=1) return self def predict(self, X): X_test = X for i in range(self.n_layers): X_test = np.concatenate((X_test, self.forest_layers[i].predict_proba(X_test)), axis=1) return self.forest_layers[-1].predict(X_test[:, :-2]) # 1. 提取序列特征(如:GC-content、序列长度等) def extract_features(fasta_file): features = [] for record in SeqIO.parse(fasta_file, "fasta"): seq = record.seq gc_content = (seq.count("G") + seq.count("C")) / len(seq) seq_len = len(seq) features.append([gc_content, seq_len]) return np.array(features) # 2. 读取相互作用数据并创建数据集 def create_dataset(rna_features, protein_features, label_file): labels = pd.read_csv(label_file, index_col=0) X = [] y = [] for i in range(labels.shape[0]): for j in range(labels.shape[1]): X.append(np.concatenate([rna_features[i], protein_features[j]])) y.append(labels.iloc[i, j]) return np.array(X), np.array(y) # 3. 调用SimpleDeepForest分类器 def optimize_deepforest(X, y): X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) model = SimpleDeepForest(n_layers=3) model.fit(X_train, y_train) y_pred = model.predict(X_test) print(classification_report(y_test, y_pred)) # 4. 主函数 def main(): rna_fasta = "RNA.fasta" protein_fasta = "pro.fasta" label_file = "label.csv" rna_features = extract_features(rna_fasta) protein_features = extract_features(protein_fasta) X, y = create_dataset(rna_features, protein_features, label_file) optimize_deepforest(X, y) if __name__ == "__main__": main()

最新推荐

recommend-type

node-v0.10.13-sunos-x86.tar.gz

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

课设毕设基于SSM的高校二手交易平台-LW+PPT+源码可运行.zip

课设毕设基于SSM的高校二手交易平台--LW+PPT+源码可运行
recommend-type

软件设计师讲义.md

软件设计师讲义.md
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

SPDK_NVMF_DISCOVERY_NQN是什么 有什么作用

SPDK_NVMF_DISCOVERY_NQN 是 SPDK (Storage Performance Development Kit) 中用于查询 NVMf (Non-Volatile Memory express over Fabrics) 存储设备名称的协议。NVMf 是一种基于网络的存储协议,可用于连接远程非易失性内存存储器。 SPDK_NVMF_DISCOVERY_NQN 的作用是让存储应用程序能够通过 SPDK 查询 NVMf 存储设备的名称,以便能够访问这些存储设备。通过查询 NVMf 存储设备名称,存储应用程序可以获取必要的信息,例如存储设备的IP地址、端口号、名称等,以便能
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这