self.conv = nn.Sequential( #第一层 (3-1)*1+1=3 (64-3)/1 + 1 =62 nn.Conv2d(in_channels = 96,out_channels = 256,kernel_size = 3 , stride = 1,padding=0,dilation=1), nn.BatchNorm2d(256), # inplace-选择是否进行覆盖运算 nn.ReLU(inplace=True), #第二层 (3-1)*2+1=5 (62-5)/1 + 1 =58 nn.Conv2d(in_channels = 256,out_channels = 256,kernel_size = 3 , stride = 1,padding=0,dilation=2), nn.BatchNorm2d(256), # inplace-选择是否进行覆盖运算 nn.ReLU(inplace=True), #第三层 (3-1)*5+1=11 (58-11)/1 +1=48 nn.Conv2d(in_channels = 256,out_channels = 512,kernel_size = 3 , stride = 1,padding=0,dilation=5), nn.BatchNorm2d(512), # inplace-选择是否进行覆盖运算 nn.ReLU(inplace=True)
时间: 2023-05-22 11:02:32 浏览: 116
self.conv 是一个在 PyTorch 中定义的类成员变量,它使用了 nn.Sequential 方法。nn.Sequential 方法是用于构建神经网络的类,它可以按照一定的顺序组合多个 nn.Module 实例,从而构建出一个神经网络模型。在这个模型中,self.conv 是一个包含多层卷积层的模块。
相关问题
class TPCNN(nn.Module): def __init__(self, num_class=10, head_payload=False): super(TPCNN, self).__init__() # 上 self.uconv1 = nn.Sequential( # nn.Conv2d(1, 16, kernel_size=3, stride=1, padding=1, dilation=1, bias=True), nn.BatchNorm2d(16, eps=1e-05, momentum=0.9, affine=True), nn.ReLU(), ) self.uconv2 = nn.Sequential( # nn.Conv2d(16, 32, kernel_size=3, stride=2, padding=1, dilation=1, bias=True), nn.BatchNorm2d(32, eps=1e-05, momentum=0.9, affine=True), nn.ReLU(), ) # 中 self.mconv1 = nn.Sequential( # nn.Conv2d(1, 32, kernel_size=3, stride=2, padding=1, dilation=1, bias=True), nn.BatchNorm2d(32, eps=1e-05, momentum=0.9, affine=True), nn.ReLU(), ) # 下 self.dconv1 = nn.Sequential( # nn.Conv2d(1, 32, kernel_size=3, stride=1, padding=1, dilation=1, bias=True), nn.BatchNorm2d(32, eps=1e-05, momentum=0.9, affine=True), nn.ReLU(), nn.MaxPool2d(kernel_size=2) ) self.uconv3 = nn.Sequential( # nn.Conv2d(96, 128, kernel_size=3, stride=1, padding=1, dilation=1, bias=True), nn.BatchNorm2d(128, eps=1e-05, momentum=0.9, affine=True), nn.ReLU(), ) self.mconv2 = nn.Sequential( # nn.Conv2d(96, 128, kernel_size=3, stride=2, padding=1, dilation=1, bias=True), nn.BatchNorm2d(128, eps=1e-05, momentum=0.9, affine=True), nn.ReLU(), ) self.dconv2 = nn.Sequential( # nn.Conv2d(96, 128, kernel_size=3, stride=1, padding=1, dilation=1, bias=True), nn.BatchNorm2d(128, eps=1e-05, momentum=0.9, affine=True), nn.ReLU(), ) self.uconv4 = nn.Sequential( # nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1, dilation=1, bias=True), nn.BatchNorm2d(512, eps=1e-05, momentum=0.9, affine=True), nn.ReLU(), ) self.globalconv1 = nn.Sequential( nn.Conv2d(896, 1024, kernel_size=3, stride=1, padding=1), nn.BatchNorm2d(1024, eps=1e-05, momentum=0.9, affine=True), nn.ReLU() ) self.dmaxpool = nn.MaxPool2d(kernel_size=2,padding=1) # self.lstm1 = nn.LSTM(256,512, 2) # self.lstm2 = nn.LSTM(self.i_size*2,self.i_size*2, 2) self.avpool = nn.AdaptiveAvgPool2d(2) # self.globallstm = nn.LSTM(512, 256, 1) self.fc1 = nn.Linear(1024*2*2, 512) self.fc2 = nn.Linear(512, num_class)
这段代码定义了一个名为TPCNN的类,继承自nn.Module。它具有一个num_class参数,默认值为10,以及一个head_payload参数,其默认值为False。在__init__函数中,它首先调用父类的构造函数,然后定义了该类的其余属性和方法。
写出将结构写在一个sequtial中的代码结构与此相同 class CNN(nn.Module): # def __init__(self): # super(CNN, self).__init__() # self.conv1 = nn.Conv2d(3, 32, 3) # self.conv2 = nn.Conv2d(32, 64, 3) # self.conv3 = nn.Conv2d(64, 128, 3) # self.conv4 = nn.Conv2d(128, 256, 3) # self.fc1 = nn.Linear(6400, 1024) # self.fc2 = nn.Linear(1024, 512) # self.fc3 = nn.Linear(512, 128) # self.fc4 = nn.Linear(128, 10) # def forward(self, x): # # 3 x 32 x 32 # x = torch.relu(self.conv1(x)) # 32 x 30 x 30 # x = nn.BatchNorm2d(32).to("cuda")(x) # 32 x 30 x 30 # x = torch.relu(self.conv2(x)) # 64 x 28 x 28 # x = torch.max_pool2d(x, 2) # 64 x 14 x 14 # x = torch.relu(self.conv3(x)) # 128 x 12 x 12 # x = nn.BatchNorm2d(128).to("cuda")(x) # 128 x 12 x 12 # x = torch.relu(self.conv4(x)) # 256 x 10 x 10 # x = torch.max_pool2d(x, 2) # 256 x 5 x 5 # x = x.view(-1, 6400) # x = torch.relu(self.fc1(x)) # x = torch.tanh(self.fc2(x)) # x = torch.relu(self.fc3(x)) # x = self.fc4(x) # return x
以下是将结构写在一个Sequential中的代码:
```python
import torch
import torch.nn as nn
class CNN(nn.Module):
def __init__(self):
super(CNN, self).__init__()
self.model = nn.Sequential(
nn.Conv2d(3, 32, 3),
nn.ReLU(),
nn.BatchNorm2d(32),
nn.Conv2d(32, 64, 3),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(64, 128, 3),
nn.ReLU(),
nn.BatchNorm2d(128),
nn.Conv2d(128, 256, 3),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Flatten(),
nn.Linear(6400, 1024),
nn.ReLU(),
nn.Linear(1024, 512),
nn.Tanh(),
nn.Linear(512, 128),
nn.ReLU(),
nn.Linear(128, 10)
)
def forward(self, x):
x = self.model(x)
return x
model = CNN()
```
在这个代码中,我们使用了`nn.Sequential`来将所有的层组合在一起。每个层都按照从输入到输出的顺序添加到了`nn.Sequential`中。同时,我们也将`nn.BatchNorm2d`和`nn.MaxPool2d`层直接添加到了`nn.Sequential`中。最后,我们在`forward`方法中调用了整个模型。
阅读全文