import torch.nn as nn from torch.nn import functional as F class InvertedResidual(nn.Module): def __init__(self, in_features, out_features, stride, expand_ratio,activation=nn.ReLU6) : super(InvertedResidual, self).__init__() self.stride = stride assert stride in [1, 2] hidden_dim = in_features * expand_ratio self.is_residual = self.stride == 1 and in_features == out_features self.conv = nn.Sequential( # pw Point-wise nn.Conv2d(in_features, hidden_dim, 1, 1, 0, bias=False), nn.BatchNorm2d(hidden_dim), activation(inplace=True), # dw Depth-wise nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim, bias=False), nn.BatchNorm2d(hidden_dim), activation(inplace=True), # pw-linear, Point-wise linear nn.Conv2d(hidden_dim, out_features, 1, 1, 0, bias=False), nn.BatchNorm2d(out_features), ) def forward(self, x): if self.is_residual: return x + self.conv(x) else: return self.conv(x) print(InvertedResidual(1280, 512, stride=2, expand_ratio=6) )

时间: 2023-05-19 15:04:40 浏览: 202
这段代码定义了一个名为InvertedResidual的类,继承自nn.Module。该类包含了一些参数,如输入特征、输出特征、步长、扩张比例和激活函数。在类的初始化函数中,会根据这些参数创建一个卷积神经网络模型,并且判断是否需要进行残差连接。其中,nn.ReLU6是一个激活函数,nn.Sequential是一个容器,可以将多个层组合在一起。
相关问题

import torch import torch.nn as nn import torch.nn.functional as F from einops import rearrange class ViTGradCAM: def __init__(self, model): self.model = model self.feature_maps = None self.gradient = None def save_feature_maps(self, module, input, output): self.feature_maps = output.detach() def save_gradient(self, grad): self.gradient = grad[0].detach() def register_hooks(self): target_layer = self.model.blocks[-1] # 修改为您希望可视化的目标层 target_layer.register_forward_hook(self.save_feature_maps) target_layer.register_backward_hook(self.save_gradient) def generate_heatmap(self, input_image, target_class=None): self.model.zero_grad() output = self.model(input_image) if target_class is None: target_class = torch.argmax(output) output[0, target_class].backward() weights = F.adaptive_avg_pool2d(self.gradient, 1) heatmap = torch.mul(self.feature_maps, weights).sum(dim=1, keepdim=True) heatmap = F.relu(heatmap) heatmap /= torch.max(heatmap) ***可以帮我解释一下这段代码吗

当使用ViT模型时,上述代码实现了对输入图像生成GradAM热力图的功能。下面是对代码的解释: 1. `ViTGradCAM`类:这是一个用于生成-CAM热力图的类。它接受一个ViT模型作为输入,并保存了模型、特征图和梯度。 2. `save_feature_maps`方法:这个方法是一个钩子函数,用于在目标层的前向传播过程中保存特征图。它将目标层的输出保存在`self.feature_maps`中。 3. `save_gradient`方法:这个方法也是一个钩子函数,用于在目标层的反向传播过程中保存梯度。它将梯度保存在`self.gradient`中。 4. `register_hooks`方法:这个方法用于注册钩子函数。它将目标层设定为模型的最后一个块(通过修改`self.model.blocks[-1]`),并分别注册前向传播和反向传播的钩子函数。 5. `generate_heatmap`方法:这个方法用于生成Grad-CAM热力图。它接受输入图像和目标类别作为输入参数。 - `self.model.zero_grad()`用于清除模型参数的梯度。 - `output = self.model(input_image)`通过模型进行前向传播,得到输出。 - 如果未指定目标类别,则选择输出的最大概率类别作为目标类别。 - `output[0, target_class].backward()`对目标类别的输出进行反向传播,计算梯度。 - `weights = F.adaptive_avg_pool2d(self.gradient, 1)`将梯度进行自适应平均池化,并保存在`weights`中。 - `heatmap = torch.mul(self.feature_maps, weights).sum(dim=1, keepdim=True)`将特征图与权重相乘,并按通道求和得到热力图。 - `heatmap = F.relu(heatmap)`对热力图进行ReLU激活。 - `heatmap /= torch.max(heatmap)`对热力图进行归一化,使得最大值为1。 这样,通过调用`generate_heatmap`方法,可以生成对输入图像的Grad-CAM热力图。 希望这个解释对您有帮助!如果您有任何其他问题,请随时提问。

import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim class Net(nn.Module): def __init__(self, input_size, output_size): super().__init__() #****任务1******定义网络计算单元****# #****任务1******定义网络计算单元****# def forward(self, x): #****任务2******网络结构****# #****任务2******网络结构****# return x

这是一个使用PyTorch定义神经网络的代码模板。可以看出,它包括了一个名为Net的类,该类继承自nn.Module类。在该类的构造函数中,我们可以自定义网络计算单元,即神经网络的各层结构以及参数。在forward函数中,我们定义了网络的前向传播过程,即输入数据如何经过各层网络计算得到最终输出。具体来说,我们需要根据任务需求来定义网络结构,例如卷积层、池化层、全连接层等。
阅读全文

相关推荐

import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import matplotlib.pyplot as plt # 定义RBF神经网络的类 class RBFNetwork(nn.Module): def __init__(self, input_size, hidden_size, output_size): super(RBFNetwork, self).__init__() # 初始化输入层,隐含层,输出层的节点数 self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size # 初始化权重矩阵和偏置向量 self.W1 = nn.Parameter(torch.randn(input_size, hidden_size)) # 输入层到隐含层的权重矩阵 self.b1 = nn.Parameter(torch.randn(hidden_size)) # 隐含层的偏置向量 self.W2 = nn.Parameter(torch.randn(hidden_size, output_size)) # 隐含层到输出层的权重矩阵 self.b2 = nn.Parameter(torch.randn(output_size)) # 输出层的偏置向量 def forward(self,x): # 前向传播过程 x = torch.from_numpy(x).float() # 将输入向量转换为张量 x = x.view(-1, self.input_size) # 调整输入向量的形状,使其与权重矩阵相匹配 h = torch.exp(-torch.cdist(x, self.W1.t()) + self.b1) # 计算隐含层的输出值,使用高斯径向基函数作为激活函数 y = F.linear(h, self.W2.t(), self.b2) # 计算输出层的输出值,使用线性函数作为激活函数 return y #定义pid控制器 class Pid(): def __init__(self, exp_val, kp, ki, kd): self.KP = kp self.KI = ki self.KD = kd self.exp_val = exp_val self.now_val = 0 self.sum_err = 0 self.now_err = 0 self.last_err = 0 def cmd_pid(self): self.last_err = self.now_err self.now_err = self.exp_val - self.now_val self.sum_err += self.now_err self.now_val = self.KP * (self.exp_val - self.now_val) \ + self.KI * self.sum_err + self.KD * (self.now_err - self.last_err) return self.now_val def err_pid(self): self.last_err = self.now_err self.now_err = self.exp_val - self.now_val self.sum_err += self.now_err self.p_err = self.exp_val - self.now_val self.i_err = self.sum_err self.d_err = self.now_err - self.last_err self.now_val = self.KP * (self.exp_val - self.now_val) \ + self.KI * self.sum_err + self.KD * (self.now_err - self.last_err) return self.p_err, self.i_err, self.d_err rbf_net = RBFNetwork(3,10,4) pid_val = [] #对pid进行初始化,目标值是1000 ,p=0.1 ,i=0.15, d=0.1 A_Pid = Pid(1000, 0.1, 0.1, 0.1) # 然后循环100次把数存进数组中去 for i in range(0, 100): input_vector = np.array(A_Pid.err_pid()) output_vector = rbf_net(input_vector) output_vector = output_vector.reshape(4,1) A_Pid = Pid(1000, output_vector[0], output_vector[1], output_vector[2]) pid_val.append(A_Pid.cmd_pid())

更改import torch import torchvision.models as models import torch.nn as nn import torch.nn.functional as F class eca_Resnet50(nn.Module): def __init__(self): super().__init__() self.model = models.resnet50(pretrained=True) self.model.avgpool = nn.AdaptiveAvgPool2d((1,1)) self.model.fc = nn.Linear(2048, 1000) self.eca = ECA_Module(2048, 8) def forward(self, x): x = self.model.conv1(x) x = self.model.bn1(x) x = self.model.relu(x) x = self.model.maxpool(x) x = self.model.layer1(x) x = self.model.layer2(x) x = self.model.layer3(x) x = self.model.layer4(x) x = self.eca(x) x = self.model.avgpool(x) x = torch.flatten(x, 1) x = self.model.fc(x) return x class ECA_Module(nn.Module): def __init__(self, channel, k_size=3): super(ECA_Module, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.conv = nn.Conv1d(1, 1, kernel_size=k_size, padding=(k_size - 1) // 2, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): b, c, _, _ = x.size() y = self.avg_pool(x) y = self.conv(y.squeeze(-1).transpose(-1,-2)).transpose(-1,-2).unsqueeze(-1) y = self.sigmoid(y) return x * y.expand_as(x) class ImageDenoising(nn.Module): def __init__(self): super().__init__() self.model = eca_Resnet50() self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1) self.conv2 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1) self.conv3 = nn.Conv2d(64, 3, kernel_size=3, stride=1, padding=1) def forward(self, x): x = self.conv1(x) x = F.relu(x) x = self.conv2(x) x = F.relu(x) x = self.conv3(x) x = F.relu(x) return x输出为[16,1,50,50]

from collections import OrderedDict import torch import torch.nn.functional as F import torchvision from torch import nn import models.vgg_ as models class BackboneBase_VGG(nn.Module): def __init__(self, backbone: nn.Module, num_channels: int, name: str, return_interm_layers: bool): super().__init__() features = list(backbone.features.children()) if return_interm_layers: if name == 'vgg16_bn': self.body1 = nn.Sequential(*features[:13]) self.body2 = nn.Sequential(*features[13:23]) self.body3 = nn.Sequential(*features[23:33]) self.body4 = nn.Sequential(*features[33:43]) else: self.body1 = nn.Sequential(*features[:9]) self.body2 = nn.Sequential(*features[9:16]) self.body3 = nn.Sequential(*features[16:23]) self.body4 = nn.Sequential(*features[23:30]) else: if name == 'vgg16_bn': self.body = nn.Sequential(*features[:44]) # 16x down-sample elif name == 'vgg16': self.body = nn.Sequential(*features[:30]) # 16x down-sample self.num_channels = num_channels self.return_interm_layers = return_interm_layers def forward(self, tensor_list): out = [] if self.return_interm_layers: xs = tensor_list for _, layer in enumerate([self.body1, self.body2, self.body3, self.body4]): xs = layer(xs) out.append(xs) else: xs = self.body(tensor_list) out.append(xs) return out class Backbone_VGG(BackboneBase_VGG): """ResNet backbone with frozen BatchNorm.""" def __init__(self, name: str, return_interm_layers: bool): if name == 'vgg16_bn': backbone = models.vgg16_bn(pretrained=True) elif name == 'vgg16': backbone = models.vgg16(pretrained=True) num_channels = 256 super().__init__(backbone, num_channels, name, return_interm_layers) def build_backbone(args): backbone = Backbone_VGG(args.backbone, True) return backbone if __name__ == '__main__': Backbone_VGG('vgg16', True)

import torch import torch.nn as nn import torch.nn.functional as F from torch.utils.data import Dataset, DataLoader from sklearn.metrics import accuracy_score import jieba from CLDNN2 import CLDNN from CLDNNtest import CLDNNtest # 定义超参数 MAX_LENGTH = 100 # 输入序列的最大长度 VOCAB_SIZE = 35091 # 词汇表大小 EMBEDDING_SIZE = 128 # 词向量的维度 NUM_FILTERS = 100 # 卷积核数量 FILTER_SIZES = [2, 3, 4] # 卷积核尺寸 class SentimentDataset(Dataset): def __init__(self, texts, labels): self.texts = texts self.labels = labels def __len__(self): return len(self.texts) def __getitem__(self, index): text = self.texts[index] label = self.labels[index] return text, label class CNNClassifier(nn.Module): def __init__(self, vocab_size, embedding_size, num_filters, filter_sizes, output_size, dropout): super().__init__() self.embedding = nn.Embedding(vocab_size, embedding_size) # self.convs = nn.ModuleList([ # nn.Conv2d(1, num_filters, (fs, embedding_size)) for fs in filter_sizes # ]) self.convs = nn.Sequential( nn.Conv2d(1, num_filters, (2, 2)), # nn.MaxPool2d(2), nn.ReLU(inplace=True), nn.Conv2d(num_filters, num_filters, (3, 3)), nn.ReLU(inplace=True), nn.Conv2d(num_filters, num_filters, (4, 4)), nn.MaxPool2d(2), nn.ReLU(inplace=True), nn.Dropout(dropout) ) self.fc = nn.Sequential( nn.Linear(286700, 300), nn.Linear(300, output_size) ) # self.dropout = nn.Dropout(dropout) def forward(self, text): # text: batch_size * seq_len embedded = self.embedding(text) # batch_size * seq_len * embedding_size # print(embedded.shape) embedded = embedded.unsqueeze(1) # batch_size * 1 * seq_len * embedding_size x = self.convs(embedded) print(x.shape) # print(embedded.shape) # conved = [F.relu(conv(embedded)).squeeze(3)

解释这段代码import torch import torch.nn as nn import torch.nn.functional as F from torch.utils.data import Dataset, DataLoader from sklearn.metrics import accuracy_score import jieba from CLDNN2 import CLDNN from CLDNNtest import CLDNNtest # 定义超参数 MAX_LENGTH = 100 # 输入序列的最大长度 VOCAB_SIZE = 35091 # 词汇表大小 EMBEDDING_SIZE = 128 # 词向量的维度 NUM_FILTERS = 100 # 卷积核数量 FILTER_SIZES = [2, 3, 4] # 卷积核尺寸 class SentimentDataset(Dataset): def __init__(self, texts, labels): self.texts = texts self.labels = labels def __len__(self): return len(self.texts) def __getitem__(self, index): text = self.texts[index] label = self.labels[index] return text, label class CNNClassifier(nn.Module): def __init__(self, vocab_size, embedding_size, num_filters, filter_sizes, output_size, dropout): super().__init__() self.embedding = nn.Embedding(vocab_size, embedding_size) # self.convs = nn.ModuleList([ # nn.Conv2d(1, num_filters, (fs, embedding_size)) for fs in filter_sizes # ]) self.convs = nn.Sequential( nn.Conv2d(1, num_filters, (2, 2)), # nn.MaxPool2d(2), nn.ReLU(inplace=True), nn.Conv2d(num_filters, num_filters, (3, 3)), nn.ReLU(inplace=True), nn.Conv2d(num_filters, num_filters, (4, 4)), nn.MaxPool2d(2), nn.ReLU(inplace=True), nn.Dropout(dropout) ) self.fc = nn.Sequential( nn.Linear(286700, 300), nn.Linear(300, output_size) ) # self.dropout = nn.Dropout(dropout) def forward(self, text): # text: batch_size * seq_len embedded = self.embedding(text) # batch_size * seq_len * embedding_size # print(embedded.shape) embedded = embedded.unsqueeze(1) # batch_size * 1 * seq_len * embedding_size x = self.convs(embedded) print(x.shape) # print(embedded.shape) # conved = [F.relu(conv(embedded)).squeeze(3)

请详细解析一下python代码: import torch.nn as nn import torch.nn.functional as F class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(3, 128, 5, padding=2) self.conv2 = nn.Conv2d(128, 128, 5, padding=2) self.conv3 = nn.Conv2d(128, 256, 3, padding=1) self.conv4 = nn.Conv2d(256, 256, 3, padding=1) self.pool = nn.MaxPool2d(2, 2) self.bn_conv1 = nn.BatchNorm2d(128) self.bn_conv2 = nn.BatchNorm2d(128) self.bn_conv3 = nn.BatchNorm2d(256) self.bn_conv4 = nn.BatchNorm2d(256) self.bn_dense1 = nn.BatchNorm1d(1024) self.bn_dense2 = nn.BatchNorm1d(512) self.dropout_conv = nn.Dropout2d(p=0.25) self.dropout = nn.Dropout(p=0.5) self.fc1 = nn.Linear(256 * 8 * 8, 1024) self.fc2 = nn.Linear(1024, 512) self.fc3 = nn.Linear(512, 10) def conv_layers(self, x): out = F.relu(self.bn_conv1(self.conv1(x))) out = F.relu(self.bn_conv2(self.conv2(out))) out = self.pool(out) out = self.dropout_conv(out) out = F.relu(self.bn_conv3(self.conv3(out))) out = F.relu(self.bn_conv4(self.conv4(out))) out = self.pool(out) out = self.dropout_conv(out) return out def dense_layers(self, x): out = F.relu(self.bn_dense1(self.fc1(x))) out = self.dropout(out) out = F.relu(self.bn_dense2(self.fc2(out))) out = self.dropout(out) out = self.fc3(out) return out def forward(self, x): out = self.conv_layers(x) out = out.view(-1, 256 * 8 * 8) out = self.dense_layers(out) return out net = Net() device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") print('Device:', device) net.to(device) num_params = sum(p.numel() for p in net.parameters() if p.requires_grad) print("Number of trainable parameters:", num_params)

检查一下:import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader, TensorDataset from sklearn.metrics import roc_auc_score # 定义神经网络模型 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.fc1 = nn.Linear(10, 64) self.fc2 = nn.Linear(64, 32) self.fc3 = nn.Linear(32, 1) self.sigmoid = nn.Sigmoid() def forward(self, x): x = self.fc1(x) x = nn.functional.relu(x) x = self.fc2(x) x = nn.functional.relu(x) x = self.fc3(x) x = self.sigmoid(x) return x # 加载数据集 data = torch.load('data.pt') x_train, y_train, x_test, y_test = data train_dataset = TensorDataset(x_train, y_train) train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True) test_dataset = TensorDataset(x_test, y_test) test_loader = DataLoader(test_dataset, batch_size=32, shuffle=False) # 定义损失函数和优化器 criterion = nn.BCELoss() optimizer = optim.Adam(net.parameters(), lr=0.01) # 训练模型 net = Net() for epoch in range(10): running_loss = 0.0 for i, data in enumerate(train_loader): inputs, labels = data optimizer.zero_grad() outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() # 在测试集上计算AUC y_pred = [] y_true = [] with torch.no_grad(): for data in test_loader: inputs, labels = data outputs = net(inputs) y_pred += outputs.tolist() y_true += labels.tolist() auc = roc_auc_score(y_true, y_pred) print('Epoch %d, loss: %.3f, test AUC: %.3f' % (epoch + 1, running_loss / len(train_loader), auc))

最新推荐

recommend-type

微信小程序源码医院挂号系统设计与实现-服务端-毕业设计.zip

本项目致力于设计与实现一个基于微信小程序的医院挂号系统,通过整合线上线下资源,旨在为用户提供便捷、高效的医疗服务体验。系统主要功能包括在线预约挂号、科室医生信息查询、就诊记录查看以及排队叫号通知等。通过微信小程序平台,用户可以直接在手机上进行挂号操作,避免了现场排队等待的烦恼。服务端采用高效稳定的技术架构,确保系统的安全性和响应速度。开发此项目的目的在于利用现代信息技术优化医院挂号流程,减少患者的时间成本,提高医院运营效率。项目不仅提升了用户体验,还为医院管理提供了数据支持,实现医疗资源的合理分配。项目为完整毕设源码,先看项目演示,希望对需要的同学有帮助。。内容来源于网络分享,如有侵权请联系我删除。另外如果没有积分的同学需要下载,请私信我。
recommend-type

创新创业计划实战经验分享:项目管理、市场推广、融资与团队建设

内容概要:本文详细介绍了创新创业项目的实战经验,涵盖项目策划与启动、产品开发与迭代、市场推广与营销、融资策略与财务管理、团队管理与文化建设五个方面。作者通过具体案例和数据分析,分享了市场调研、产品迭代、多渠道营销、多元化融资以及团队建设的经验。 适合人群:创业者、企业管理人员、市场营销人员、投融资专家、产品经理。 使用场景及目标:① 创业项目的前期策划和市场调研;② 产品开发过程中用户反馈和技术创新的管理;③ 市场推广策略的制定和执行;④ 多元化融资渠道的选择和管理;⑤ 团队建设与文化建设的实际操作方法。 其他说明:本文不仅提供了实际的操作步骤和经验总结,还结合了大量具体的数据分析,使得读者可以更好地理解和应用这些方法。
recommend-type

Elasticsearch核心改进:实现Translog与索引线程分离

资源摘要信息:"Elasticsearch是一个基于Lucene构建的开源搜索引擎。它提供了一个分布式多用户能力的全文搜索引擎,基于RESTful web接口。Elasticsearch是用Java语言开发的,并作为Apache许可条款下的开源项目发布,是当前流行的企业级搜索引擎。设计用于云计算中,能够达到实时搜索,稳定,可靠,快速,安装使用方便。" "Elasticsearch的索引线程是处理索引操作的重要部分,负责处理数据的写入、更新和删除等操作。但是,在处理大量数据和高并发请求时,如果索引线程处理速度过慢,就会导致数据处理的延迟,影响整体性能。因此,Elasticsearch采用了事务日志(translog)机制来提高索引操作的效率和可靠性。" "Elasticsearch的事务日志(translog)是一种持久化存储机制,用于记录所有未被持久化到分片中的索引操作。在发生故障或系统崩溃时,事务日志可以确保所有索引操作不会丢失,保证数据的完整性。每个分片都有自己的事务日志文件。" "在Elasticsearch的早期版本中,事务日志的操作和索引线程的操作是在同一个线程中完成的,这可能会导致性能瓶颈。为了解决这个问题,Elasticsearch将事务日志的操作从索引线程中分离出去,使得索引线程可以专注于数据的索引操作,而事务日志的操作可以独立地进行。这样可以大大提高了Elasticsearch的索引性能。" "但是,事务日志的操作是独立于索引操作的,这就需要保证事务日志的操作不会影响到索引操作的性能。因此,在将事务日志从索引线程分离出去的同时,Elasticsearch也引入了一些优化策略,比如批量写入事务日志,减少磁盘I/O操作,以及优化事务日志的数据结构,提高读写效率等。" "需要注意的是,虽然事务日志的分离可以提高索引操作的性能,但是也会增加系统的复杂度和维护难度。因此,开发者在使用这个功能时,需要充分理解其原理和影响,才能确保系统的稳定运行。" "此外,由于这个功能还处于测试和学习阶段,尚未被广泛应用于生产环境,所以开发者在使用时需要谨慎,避免对生产环境造成影响。" "总的来说,Elasticsearch的事务日志的分离是一个重要的优化,可以大大提升索引操作的性能,但是在使用时也需要充分考虑其带来的影响,才能确保系统的稳定运行。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

病房呼叫系统设计基础:7个关键架构策略让你一步入门

![病房呼叫系统设计基础:7个关键架构策略让你一步入门](https://zektek.com.mx/wp-content/uploads/2021/03/diagram-enfermeria.jpg) # 摘要 本文对病房呼叫系统进行了深入的概述、需求分析、架构设计、功能实现以及实践应用案例的探讨。通过分析系统架构的重要性、设计原则、模块划分和数据流,确保了系统的高效运行和优化。本文进一步探讨了呼叫信号传输技术、显示与反馈机制、系统安全性与可靠性设计,并分析了系统部署环境、安装调试流程和维护升级策略。最后,文章展望了病房呼叫系统的未来发展趋势,包括智能化、技术融合以及法规遵从与伦理考量,并
recommend-type

Selenium如何获取Shadow DOM下的元素属性?

在Selenium中,获取Shadow DOM下的元素属性通常涉及到两步:首先找到元素,然后访问它的属性。由于Shadow DOM元素默认是不可见的(对于非JavaScript开发者),所以我们需要用JavaScript脚本来获取其内容。 下面是一个示例,展示如何通过Selenium的`execute_script`函数获取Shadow DOM元素的属性: ```python from selenium.webdriver.common.by import By from selenium.webdriver.support.ui import WebDriverWait from sel
recommend-type

分享个人Vim与Git配置文件管理经验

资源摘要信息:"conffiles:我的vim和git配置文件" 在给定的文件信息中,我们可以梳理出一些关键知识点,这些知识点主要涉及到了Vim编辑器和Git版本控制系统,同时涉及到了Linux环境下的一些文件操作知识。 首先,文件标题提到了"conffiles",这通常是指配置文件(configuration files)的缩写。配置文件是软件运行时用于读取用户设置或其他运行参数的文件,它们允许软件按照用户的特定需求进行工作。在本例中,这些配置文件是与Vim编辑器和Git版本控制系统相关的。 Vim是一种流行的文本编辑器,是UNIX系统中vi编辑器的增强版本。Vim不仅支持代码编辑,还支持插件扩展、多种模式(命令模式、插入模式、视觉模式等)和高度可定制化。在这个上下文中,"我的vim"可能指的是使用者为Vim定制的一套配置文件,这些配置文件可能包含键位映射、颜色主题、插件设置、用户界面布局和其他个性化选项。 Git是一个版本控制系统,用于跟踪计算机文件的更改和协作。Git是分布式版本控制,这意味着每个开发者都有一个包含完整项目历史的仓库副本。Git常用于代码的版本控制管理,它允许用户回滚到之前的版本、合并来自不同贡献者的代码,并且有效地管理代码变更。在这个资源中,"git conffiles"可能表示与Git用户相关的配置文件,这可能包括用户凭证、代理设置、别名以及其他一些全局Git配置选项。 描述部分提到了使用者之前使用的编辑器是Vim,但现在转向了Emacs。尽管如此,该用户仍然保留了以前的Vim配置文件。接着,描述中提到了一个安装脚本命令"sh ./.vim/install.sh"。这是一个shell脚本,通常用于自动化安装或配置过程。在这里,这个脚本可能用于创建符号链接(symbolic links),将旧的Vim配置文件链接到当前使用的Emacs配置文件夹中,使用户能够继续使用他们熟悉且习惯的Vim配置。 标签"Vimscript"表明这是一个与Vim脚本相关的资源,Vim脚本是一种专门用于自定义和扩展Vim功能的编程语言。Vimscript可以用于编写宏、自定义函数、插件等。 最后,文件名称列表"conffiles-master"可能表明这个压缩包文件包含了一系列的主配置文件。在Git版本控制的术语中,"master"(现在通常称为"main")分支是项目仓库的默认分支。这暗示了这些配置文件可能是该用户项目的主配置文件,这些配置文件被包含在名为"conffiles-master"的压缩包中。 综上所述,这个资源可能是一个集合了Vim编辑器和Git版本控制系统的个人配置文件的压缩包,附带一个用于符号链接旧Vim配置的安装脚本,它能够帮助用户在转向其他工具时仍然能够使用之前的个性化设置。这个资源对于想要了解如何管理和迁移配置文件的用户具有一定的参考价值。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【Genesis 2000教程】:7个技巧助你精通界面布局与操作

![技术专有名词:Genesis 2000](http://intewellos.com/uploadfiles/2023/03/20230321111815165.png) # 摘要 本文全面介绍了Genesis 2000软件的界面布局基础、操作技巧、视觉效果调整、高级功能应用以及综合案例分析,旨在帮助用户高效利用该软件提升工作效率和设计质量。文章首先从界面元素和布局优化入手,讲述了如何定制面板、工具栏以及管理窗口与视图。接着,探讨了通过快捷键和搜索功能实现的高效导航与搜索技巧。第三章强调了视觉效果与图形、文本处理的重要性,并提供实现高级视觉效果的技巧。第四章详细介绍了插件集成、参数化设计
recommend-type

求出所有100到200以内的偶数,并放在数组中,按照每行5个输出

为了求出100到200之间所有的偶数并将它们放入数组中,然后每行打印5个,你可以按以下步骤操作: 1. 创建一个空数组,用于存储偶数。 2. 使用一个for循环,从100开始,每次增加2,直到达到200(包括200)。 - 对于每个数字,检查它是否是偶数(除以2余数为0)。 - 如果是偶数,则添加到数组中。 3. 当找到一个偶数后,检查数组的长度。如果到达或超过5个元素,就开始一个新的行并清空数组,只保留最后一个偶数。 4. 循环结束后,无论数组是否满5个元素,都需要打印剩余的偶数。 这是一个伪代码示例: ```python array = [] num = 100 whil