这是DGCHead的代码,我想让你在这段代码里加入正余弦位置编码:class DualGCNHead(nn.Module): def __init__(self, inplanes, interplanes, num_classes): super(DualGCNHead, self).__init__() self.conva = nn.Sequential(nn.Conv2d(inplanes, interplanes, 3, padding=1, bias=False), BatchNorm2d(interplanes), nn.ReLU(interplanes)) self.dualgcn = DualGCN(interplanes) self.convb = nn.Sequential(nn.Conv2d(interplanes, interplanes, 3, padding=1, bias=False), BatchNorm2d(interplanes), nn.ReLU(interplanes)) self.bottleneck = nn.Sequential( nn.Conv2d(inplanes + interplanes, interplanes, kernel_size=3, padding=1, dilation=1, bias=False), BatchNorm2d(interplanes), nn.ReLU(interplanes), nn.Conv2d(interplanes, num_classes, kernel_size=1, stride=1, padding=0, bias=True) ###################### 512-->256 ) def forward(self, x): output = self.conva(x) output = self.dualgcn(output) output = self.convb(output) output = self.bottleneck(torch.cat([x, output], 1)) return output
时间: 2023-11-21 16:04:33 浏览: 69
Jpeg_Decompress.rar_JPEG 转 BMP_bmp转jpg的c代码_jpeg decompress_site:
Sure! Here is the modified code with added sine and cosine positional encoding:
```
import math
class DualGCNHead(nn.Module):
def __init__(self, inplanes, interplanes, num_classes, height, width):
super(DualGCNHead, self).__init__()
self.conva = nn.Sequential(nn.Conv2d(inplanes, interplanes, 3, padding=1, bias=False),
BatchNorm2d(interplanes),
nn.ReLU(interplanes))
self.dualgcn = DualGCN(interplanes)
self.convb = nn.Sequential(nn.Conv2d(interplanes, interplanes, 3, padding=1, bias=False),
BatchNorm2d(interplanes),
nn.ReLU(interplanes))
self.height = height
self.width = width
self.pos_encoding = self.get_positional_encoding(interplanes, height, width)
self.bottleneck = nn.Sequential(
nn.Conv2d(inplanes + interplanes*2, interplanes, kernel_size=3, padding=1, dilation=1, bias=False),
BatchNorm2d(interplanes),
nn.ReLU(interplanes),
nn.Conv2d(interplanes, num_classes, kernel_size=1, stride=1, padding=0, bias=True)
)
def forward(self, x):
output = self.conva(x)
output = self.dualgcn(output)
output = self.convb(output)
output = torch.cat([x, output, self.pos_encoding], 1)
output = self.bottleneck(output)
return output
def get_positional_encoding(self, d_model, height, width):
pe_h = torch.zeros(height, d_model)
pe_w = torch.zeros(width, d_model)
for pos in range(height):
for i in range(0, d_model, 2):
pe_h[pos, i] = math.sin(pos / (10000 ** ((2 * i)/d_model)))
pe_h[pos, i+1] = math.cos(pos / (10000 ** ((2 * (i+1))/d_model)))
for pos in range(width):
for i in range(0, d_model, 2):
pe_w[pos, i] = math.sin(pos / (10000 ** ((2 * i)/d_model)))
pe_w[pos, i+1] = math.cos(pos / (10000 ** ((2 * (i+1))/d_model)))
pos_encoding = torch.cat([pe_h.unsqueeze(0).repeat(width, 1, 1).transpose(0, 1).unsqueeze(0),
pe_w.unsqueeze(0).repeat(height, 1, 1).unsqueeze(0)], dim=0)
return pos_encoding
```
The `get_positional_encoding` function generates the sine and cosine positional encoding based on the input dimension, height, and width. The encoding is then concatenated with the output of the dual GCN layer before passing through the bottleneck layer.
阅读全文