class PositionalEncoding(nn.Module): def __init__(self, d_model, dropout, max_len=5000): # d_model:词嵌入维度 # dropout:置零比率 # max_len:每个句子最大的长度 super(PositionalEncoding, self).__init__() self.dropout = nn.Dropout(p=dropout) pe = torch.zeros(max_len, d_model) position = torch.arange(0, max_len).unsqueeze(1) div_term = torch.exp(torch.arange(0, d_model, 2) * -(math.log(1000.0) / d_model)) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) pe = pe.unsqueeze(0) self.register_buffer("pe", pe) def forward(self, x): x = x + Variable(self.pe[:, :x.size(1)], requires_grad=False) return self.dropout(x)
时间: 2024-04-20 17:23:36 浏览: 215
这是一个用于实现位置编码的类`PositionalEncoding`。在Transformer模型中,位置编码用于为输入序列中的每个位置添加一些位置信息。这样做是因为Transformer没有使用循环或卷积操作来处理序列,而是通过自注意力机制来处理输入的位置关系。
在这个类中,`__init__`方法初始化了位置编码层的参数。`d_model`表示词嵌入的维度,`dropout`表示置零比率,`max_len`表示每个句子最大的长度。在该方法中,首先创建一个大小为`max_len`x`d_model`的零矩阵`pe`,然后计算位置编码的值。位置编码的计算方式是根据位置和维度来计算正弦和余弦值,并将它们分别赋值给`pe`矩阵的奇数和偶数列。最后,将生成的位置编码矩阵`pe`添加到模型的缓冲区中。
`forward`方法用于应用位置编码到输入张量`x`上。首先从缓冲区中获取位置编码矩阵`pe`的前`x.size(1)`个位置,并将其与输入张量相加。然后应用dropout操作,并返回结果。
请注意,此代码片段缺少一些必要的导入语句和变量定义,因此无法直接运行。如果您有其他问题,请继续提问。
相关问题
class Transformer(nn.Module): def __init__(self, vocab_size: int, max_seq_len: int, embed_dim: int, hidden_dim: int, n_layer: int, n_head: int, ff_dim: int, embed_drop: float, hidden_drop: float): super().__init__() self.tok_embedding = nn.Embedding(vocab_size, embed_dim) self.pos_embedding = nn.Embedding(max_seq_len, embed_dim) layer = nn.TransformerEncoderLayer( d_model=hidden_dim, nhead=n_head, dim_feedforward=ff_dim, dropout=hidden_drop) self.encoder = nn.TransformerEncoder(layer, num_layers=n_layer) self.embed_dropout = nn.Dropout(embed_drop) self.linear1 = nn.Linear(embed_dim, hidden_dim) self.linear2 = nn.Linear(hidden_dim, embed_dim) def encode(self, x, mask): x = x.transpose(0, 1) x = self.encoder(x, src_key_padding_mask=mask) x = x.transpose(0, 1) return x
这是一段使用 PyTorch 实现的 Transformer 模型的代码,用于自然语言处理任务中的序列建模,例如文本分类、机器翻译等。
该模型的输入是一个词汇表大小为 `vocab_size`,最大序列长度为 `max_seq_len` 的词嵌入(embedding)矩阵,其中每个词嵌入的维度为 `embed_dim`。模型使用了 `n_layer` 层 TransformerEncoderLayer,每个 EncoderLayer 中包含了 `n_head` 个注意力头(self-attention)。每个 EncoderLayer 的隐藏层大小为 `hidden_dim`,Feedforward 层的大小为 `ff_dim`,并在每个 EncoderLayer 后应用了一个 `hidden_drop` 的 Dropout。在模型的输入层和第一个 EncoderLayer 之间,使用了一个 `embed_drop` 的 Dropout。
在 forward 方法中,输入的 `x` 是一个形状为 `(batch_size, seq_len)` 的整数张量,表示一个批次中的多个序列。`mask` 是一个形状为 `(batch_size, seq_len)` 的布尔型张量,用于指示哪些位置是填充值,需要被屏蔽。在 encode 方法中,模型首先将输入的 `x` 转置为 `(seq_len, batch_size)` 的形状,然后将其输入到 TransformerEncoder 中进行编码。最后,将编码结果再次转置为 `(batch_size, seq_len)` 的形状并返回。
import torch import torch.nn as nn import torch.optim as optim import torchvision.datasets as datasets import torchvision.transforms as transforms # 定义超参数 batch_size = 64 learning_rate = 0.001 num_epochs = 10 # 定义数据预处理 transform = transforms.Compose([ transforms.ToTensor(), # 转换为Tensor类型 transforms.Normalize((0.1307,), (0.3081,)) # 标准化,使得均值为0,标准差为1 ]) # 加载MNIST数据集 train_dataset = datasets.MNIST(root='C:/MNIST', train=True, transform=transform, download=True) test_dataset = datasets.MNIST(root='C:/MNIST', train=False, transform=transform, download=True) train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True) test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False) # 定义CNN模型 class CNN(nn.Module): def __init__(self): super(CNN, self).__init__() self.conv1 = nn.Conv2d(1, 32, kernel_size=3, stride=1, padding=1) self.bn1 = nn.BatchNorm2d(32) self.relu1 = nn.ReLU() self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1) self.bn2 = nn.BatchNorm2d(64) self.relu2 = nn.ReLU() self.pool = nn.MaxPool2d(kernel_size=2, stride=2) self.fc1 = nn.Linear(64 * 7 * 7, 128) self.relu3 = nn.ReLU() self.fc2 = nn.Linear(128, 10) def forward(self, x): out = self.conv1(x) out = self.bn1(out) out = self.relu1(out) out = self.conv2(out) out = self.bn2(out) out = self.relu2(out) out = self.pool(out) out = out.view(-1, 64 * 7 * 7) out = self.fc1(out) out = self.relu3(out) out = self.fc2(out) return out # 实例化模型并定义损失函数和优化器 model = CNN() criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=learning_rate) # 训练模型 total_step = len(train_loader) for epoch in range(num_epochs): for i, (images, labels) in enumerate(train_loader): # 前向传播 outputs = model(images) loss = criterion(outputs, labels) # 反向传播和优化 optimizer.zero_grad() loss.backward() optimizer.step() # 每100个batch打印一次训练信息 if (i+1) % 100 == 0: print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}' .format(epoch+1, num_epochs, i+1, total_step, loss.item())) # 测试模型 model.eval() # 进入测试模式,关闭Dropout和BatchNormalization层 with torch.no_grad(): correct = 0 total = 0 for images, labels in test_loader: outputs = model(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Test Accuracy of the model on the 10000 test images: {} %'.format(100 * correct / total))运行一下此代码
好的,运行这段代码需要先安装PyTorch库。如果已经安装了PyTorch库,可以直接在命令行或者Python IDE中运行这段代码,或者将这段代码保存为一个.py文件然后运行。在运行之前,需要将代码中的数据集路径修改为本地路径,可以在代码中找到“root='C:/MNIST'”这一行将其修改为你的本地路径。运行后,模型会进行训练和测试,并输出测试准确率。
阅读全文