基于tensorflow编写迁移学习中的域分类损失函数,要求设置域判别器判断该域来自源域还是目标域,给出代码
时间: 2024-03-04 07:53:00 浏览: 126
实战:使用 tensorflow 实现迁移学习
5星 · 资源好评率100%
以下是基于 TensorFlow 编写的迁移学习中的域分类损失函数,包括分类器和域判别器,并设置了判断数据来自源域还是目标域的逻辑:
```python
import tensorflow as tf
def domain_classifier(x, reuse=False):
with tf.variable_scope('domain_classifier', reuse=reuse):
x = tf.layers.dense(x, units=128, activation=tf.nn.relu)
x = tf.layers.dense(x, units=64, activation=tf.nn.relu)
x = tf.layers.dense(x, units=1, activation=tf.nn.sigmoid)
return x
def domain_classification_loss(source_logits, target_logits):
source_labels = tf.ones_like(source_logits)
target_labels = tf.zeros_like(target_logits)
logits = tf.concat([source_logits, target_logits], axis=0)
labels = tf.concat([source_labels, target_labels], axis=0)
loss = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(logits=logits, labels=labels))
return loss
def train_step(inputs, labels, source_domain, target_domain, lambda_value):
# 构建分类器
with tf.variable_scope('classifier'):
x = tf.layers.dense(inputs, units=128, activation=tf.nn.relu)
x = tf.layers.dense(x, units=64, activation=tf.nn.relu)
logits = tf.layers.dense(x, units=10)
cls_loss = tf.reduce_mean(
tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=labels))
# 构建域判别器
source_logits = domain_classifier(inputs, reuse=False)
target_logits = domain_classifier(inputs, reuse=True)
dom_loss = domain_classification_loss(source_logits, target_logits)
# 计算总损失
loss = cls_loss - lambda_value * dom_loss
# 定义优化器
optimizer = tf.train.AdamOptimizer(learning_rate=0.001)
train_op = optimizer.minimize(loss)
# 运行优化器
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for i in range(num_steps):
inputs_batch, labels_batch = get_batch(train_data, train_labels, batch_size)
source_domain_batch = get_domain_labels(inputs_batch.shape[0], 1)
target_domain_batch = get_domain_labels(inputs_batch.shape[0], 0)
feed_dict = {
inputs: inputs_batch,
labels: labels_batch,
source_domain: source_domain_batch,
target_domain: target_domain_batch,
lambda_value: 0.1
}
_, loss_val = sess.run([train_op, loss], feed_dict=feed_dict)
if i % 100 == 0:
print('Step %d, loss = %.4f' % (i, loss_val))
```
以上代码中,`train_step` 函数为训练函数,其中包括分类器和域判别器的构建以及损失函数的定义。`domain_classifier` 函数用于构建域判别器,`domain_classification_loss` 函数用于计算二元交叉熵损失函数。在训练过程中,我们需要为输入数据设置源域和目标域标签,并通过 `lambda_value` 超参数控制分类器和域判别器的权重。
阅读全文