pso-Q-learning多分类python代码
时间: 2023-09-15 18:24:26 浏览: 119
python q-learning
4星 · 用户满意度95%
下面是一个简单的PSO-Q-learning多分类的Python代码示例,仅供参考:
```python
import numpy as np
import random
# 定义状态和动作
states = np.random.rand(100, 10)
actions = np.arange(5)
# 初始化Q值函数和粒子群
Q = np.zeros((100, 5))
particles = np.random.rand(10, 5, 15)
# 定义PSO参数
w = 0.8
c1 = 0.2
c2 = 0.6
# 定义Q-learning参数
alpha = 0.5
gamma = 0.9
# 计算粒子适应度
def fitness(particle):
scores = []
for i in range(10):
for j in range(5):
state = states[i]
action = actions[j]
next_state = states[np.random.choice(100)]
reward = np.dot(state, particle[j*3:j*3+3])
next_action = np.argmax(Q[next_state])
Q[state, action] = (1-alpha)*Q[state, action] + alpha*(reward+gamma*Q[next_state, next_action])
scores.append(np.mean(np.argmax(Q, axis=1) == i))
return np.mean(scores)
# 更新粒子速度和位置
for i in range(100):
for j in range(5):
particle = particles[i,j]
velocity = particles[i,j,5:10]
pbest_particle = particles[i,j,10:]
gbest_particle = particles[i,j+1,10:]
fitness_p = fitness(particle)
fitness_pbest = fitness(pbest_particle)
fitness_gbest = fitness(gbest_particle)
velocity = w*velocity + c1*random.random()*(pbest_particle-particle) + c2*random.random()*(gbest_particle-particle)
particle = particle + velocity
particles[i,j] = particle
if fitness(particle) > fitness_pbest:
particles[i,j,10:] = particle
if fitness(particle) > fitness_gbest:
particles[i,j+1,10:] = particle
# 更新Q值函数
for i in range(100):
for j in range(5):
state = states[i]
action = actions[j]
next_state = states[np.random.choice(100)]
reward = np.dot(state, particles[i,j*3:j*3+3])
next_action = np.argmax(Q[next_state])
Q[state, action] = (1-alpha)*Q[state, action] + alpha*(reward+gamma*Q[next_state, next_action])
```
需要注意的是,上述代码仅作为一个简单的示例,实际应用中需要根据具体问题进行调整和优化。
阅读全文