用 Python 读入一幅灰度图像利用 Hough 变换检测图像中的直线和圆,代码
时间: 2023-06-03 15:07:48 浏览: 130
请看下面的代码:
```python
import cv2
import numpy as np
# 读取灰度图像
img = cv2.imread('test.jpg', 0)
# 应用Canny边缘检测算法
edges = cv2.Canny(img, 50, 150)
# 应用Hough变换检测直线
lines = cv2.HoughLines(edges, 1, np.pi/180, 200)
# 绘制检测到的直线
for line in lines:
rho, theta = line[0]
a = np.cos(theta)
b = np.sin(theta)
x0 = a*rho
y0 = b*rho
x1 = int(x0 + 1000*(-b))
y1 = int(y0 + 1000*(a))
x2 = int(x0 - 1000*(-b))
y2 = int(y0 - 1000*(a))
cv2.line(img, (x1,y1), (x2,y2), (0,0,255), 2)
# 应用Hough变换检测圆
circles = cv2.HoughCircles(edges, cv2.HOUGH_GRADIENT, dp=2, minDist=100, param1=100, param2=50, minRadius=20, maxRadius=100)
# 绘制检测到的圆
if circles is not None:
circles = np.around(circles)
for i in circles[0, :]:
cv2.circle(img, (i[0], i[1]), i[2], (0, 255, 0), 2)
# 显示图像
cv2.imshow('image', img)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
该代码实现了对灰度图像的读入和通过Hough变换进行直线和圆的检测。其中,使用了OpenCV库提供的Canny边缘检测算法和HoughLines和HoughCircles函数对图像进行处理。具体实现过程请参考代码注释。
请注意,该代码未对输入的图像进行类型和大小的检查,因此请确保输入图像的类型为灰度图像且大小合适。
阅读全文