def train(model, train_loader, optimizer, loss_func, n_labels, alpha): print("=======Epoch:{}=======lr:{}".format(epoch,optimizer.state_dict()['param_groups'][0]['lr'])) model.train() train_loss = LossAverage() train_dice = DiceAverage(n_labels) for idx, (data, target) in tqdm(enumerate(train_loader),total=len(train_loader)): data, target = data.float(), target.long() # data, target = data.cuda().float(), target.cuda().long() target = to_one_hot_3d(target,n_labels) data, target = data.to(device), target.to(device) # print(data.shape) # data, target = data.cuda(), target.cuda() optimizer.zero_grad() output = model(data) loss0 = loss_func(output[0], target) loss1 = loss_func(output[1], target) loss2 = loss_func(output[2], target) loss3 = loss_func(output[3], target) loss = loss3 + alpha * (loss0 + loss1 + loss2) loss.backward() optimizer.step() train_loss.update(loss3.item(),data.size(0)) train_dice.update(output[3], target) train_log = OrderedDict({'Train_Loss': train_loss.avg, 'Train_dice_CTV': train_dice.avg[1]})if n_labels == 5: train_log.update({'Train_dice_intestine': train_dice.avg[2], 'Train_dice_Rectum': train_dice.avg[3], 'Train_dice_Bladder': train_dice.avg[4] }) return train_log, train_loss.avg, train_dice.avg[1]
时间: 2023-06-27 08:06:12 浏览: 166
Oracle高级SQL调优:CLUSTER_FACTOR案例研究
这是一个用于训练神经网络模型的函数。它包含以下参数:
- model: 要训练的模型
- train_loader: 用于训练的数据加载器
- optimizer: 优化器,用于更新模型参数
- loss_func: 损失函数,用于计算模型输出与真实标签之间的差异
- n_labels: 标签的数量
- alpha: 控制不同损失项之间权重的超参数
在函数中,首先打印当前的 epoch 和学习率,然后将模型设置为训练模式。接下来,遍历训练数据加载器中的每个 batch,将数据和标签转换为 PyTorch 张量,并将它们移动到指定的设备上。
然后,将优化器的梯度清零,使用模型对数据进行前向传递,计算模型输出与真实标签之间的损失,并计算加权后的总损失。最后,反向传播并更新模型参数。在训练过程中,同时记录平均损失和每个类别的 Dice 系数,并返回这些值。
阅读全文