def train(model,device,train_loader,optimizer,epoch,losses): model.train() for idx,(t_data,t_target) in enumerate(train_loader): t_data,t_target=t_data.to(device),t_target.to(device) pred=model(t_data)#batch_size*2 loss=F.n
时间: 2024-01-26 19:02:26 浏览: 93
看起来这是一个 Python 代码片段。这段代码是一个训练神经网络的函数,它的参数包括模型、设备、训练数据加载器、优化器、当前 epoch 数和一个列表用于存储训练损失。函数中的循环遍历训练数据加载器中的数据,将数据和目标值移动到指定的设备中,然后使用模型进行预测。接下来使用 PyTorch 中的交叉熵损失函数计算预测值和目标值之间的损失。最后使用优化器更新模型参数以最小化损失函数。整个函数的作用是将模型在训练数据上进行训练,更新模型参数以提高模型准确率。
相关问题
Runs MNIST training with differential privacy. """ Using matrix project to compress the gradient matrix """ def compress(grad, num_k, power_iter=1): return B, G_hat """ Complete the function of per-example clip """ def clip_column(tsr, clip_value=1.0): return def train(args, model, device, train_loader, optimizer, epoch, loss_func, clip_value): model.train() # criterion = nn.CrossEntropyLoss() losses = [] for _batch_idx, (data, target) in enumerate(tqdm(train_loader)): data, target = data.to(device), target.to(device) batch_grad_list = [] optimizer.zero_grad() output = model(data) loss = loss_func(output, target) if not args.disable_dp: with backpack(BatchGrad()): loss.backward() for p in model.parameters(): batch_grad_list.append(p.grad_batch.reshape(p.grad_batch.shape[0], -1)) #compose gradient into Matrix del p.grad_batch """ Using project method to compress the gradient """ if args.using_compress: #per-example clip else: """ Complete the code of DPSGD """ else: loss.backward() try: for p in model.parameters(): del p.grad_batch except: pass optimizer.step() losses.append(loss.item()) #get the num of the training dataset from train_loader if not args.disable_dp: epsilon = get_epsilon(epoch, delta=args.delta, sigma=args.sigma, sensitivity=clip_value, batch_size=args.batch_size, training_nums=len(train_loader)*args.batch_size) print( f"Train Epoch: {epoch} \t" f"Loss: {np.mean(losses):.6f} " f"(ε = {epsilon:.2f}, δ = {args.delta})" ) else: print(f"Train Epoch: {epoch} \t Loss: {np.mean(losses):.6f}")
这段代码是运行带有差分隐私的MNIST训练,其中使用矩阵项目压缩梯度矩阵。函数compress(grad, num_k, power_iter=1)用于压缩梯度矩阵,该函数返回B和G_hat。函数clip_column(tsr, clip_value=1.0)是用于每个样本的剪切函数,需要你完成代码。train函数是训练函数,其中loss_func是损失函数,clip_value是剪切值,如果不禁用差分隐私,则会计算epsilon值并打印。
for iteration, batch in enumerate(tqdm_dataloader): user_idx, pos_idx, neg_idx = batch rep, user_pool = self.model(graph) user = rep[user_idx] + user_pool[user_idx] pos = rep[self.model.n_user + pos_idx] neg = rep[self.model.n_user + neg_idx] pos_preds = self.model.predict(user, pos) neg_preds = self.model.predict(user, neg) loss, losses = self.criterion(pos_preds, neg_preds, user, pos, neg) self.optimizer.zero_grad() loss.backward() self.optimizer.step() epoch_losses = [x + y for x, y in zip(epoch_losses, losses)] tqdm_dataloader.set_description('Epoch {}, loss: {:.4f}'.format(self.epoch, loss.item())) if self.scheduler is not None: self.scheduler.step() epoch_losses = [sum(epoch_losses)] + epoch_losses return epoch_losses
在这段代码中,是一个训练过程中的一个 epoch 的逻辑。
首先,使用 `enumerate` 函数迭代 `tqdm_dataloader`,返回迭代次数和每个批次的数据。
然后,从 `batch` 中解包得到 `user_idx`、`pos_idx` 和 `neg_idx`,表示当前批次中的用户、正样本和负样本的索引。
接下来,通过调用 `self.model(graph)` 方法,传入 `graph` 对象,获取模型的表示向量 `rep` 和用户池(user pool)的表示向量 `user_pool`。
然后,根据索引从 `rep` 中取出对应的用户向量 `user`、正样本向量 `pos` 和负样本向量 `neg`。
通过调用 `self.model.predict(user, pos)` 和 `self.model.predict(user, neg)`,分别得到正样本和负样本的预测结果 `pos_preds` 和 `neg_preds`。
接下来,调用 `self.criterion(pos_preds, neg_preds, user, pos, neg)` 方法,传入预测结果和实际数据,计算损失值和各个损失函数的值。
然后,调用 `self.optimizer.zero_grad()` 方法将模型参数的梯度置零,以便进行下一次反向传播。
接着,调用 `loss.backward()` 方法进行反向传播计算梯度。
然后,调用 `self.optimizer.step()` 方法更新模型参数。
通过迭代更新 `epoch_losses` 列表,将当前批次的损失值累加到 `epoch_losses` 中。
在 `tqdm_dataloader` 的描述信息中显示当前 epoch 的编号和损失值。
如果存在学习率调度器(scheduler),则调用 `self.scheduler.step()` 方法更新学习率。
最后,将 `epoch_losses` 列表中的各个损失值相加,并将总和作为第一个元素添加到 `epoch_losses` 列表的开头。
最后,返回 `epoch_losses` 列表,它包含了当前 epoch 中各个损失函数的累计损失值。
阅读全文