用pcl库,基于激光雷达点云数据的道路可行驶区域检测,得到道路边界,车道线等,生成代码
时间: 2024-05-15 09:16:40 浏览: 191
以下是一个基于pcl库的道路可行驶区域检测的示例代码:
```
#include <iostream>
#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/filters/voxel_grid.h>
#include <pcl/filters/passthrough.h>
#include <pcl/filters/statistical_outlier_removal.h>
#include <pcl/segmentation/sac_segmentation.h>
#include <pcl/segmentation/extract_clusters.h>
#include <pcl/features/normal_3d.h>
#include <pcl/filters/extract_indices.h>
#include <pcl/sample_consensus/method_types.h>
#include <pcl/sample_consensus/model_types.h>
#include <pcl/segmentation/sac_segmentation.h>
#include <pcl/segmentation/extract_clusters.h>
int main(int argc, char** argv)
{
// Load input data from PCD file
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);
pcl::io::loadPCDFile<pcl::PointXYZ>("input_cloud.pcd", *cloud);
// Downsample the point cloud using a voxel grid filter
pcl::VoxelGrid<pcl::PointXYZ> vg;
vg.setInputCloud(cloud);
vg.setLeafSize(0.1f, 0.1f, 0.1f);
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered(new pcl::PointCloud<pcl::PointXYZ>);
vg.filter(*cloud_filtered);
// Filter out points outside a certain range
pcl::PassThrough<pcl::PointXYZ> pass;
pass.setInputCloud(cloud_filtered);
pass.setFilterFieldName("z");
pass.setFilterLimits(0.0, 1.0);
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered_range(new pcl::PointCloud<pcl::PointXYZ>);
pass.filter(*cloud_filtered_range);
// Remove statistical outliers
pcl::StatisticalOutlierRemoval<pcl::PointXYZ> sor;
sor.setInputCloud(cloud_filtered_range);
sor.setMeanK(50);
sor.setStddevMulThresh(1.0);
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered_outliers(new pcl::PointCloud<pcl::PointXYZ>);
sor.filter(*cloud_filtered_outliers);
// Estimate surface normals
pcl::NormalEstimation<pcl::PointXYZ, pcl::Normal> ne;
ne.setInputCloud(cloud_filtered_outliers);
pcl::search::KdTree<pcl::PointXYZ>::Ptr tree(new pcl::search::KdTree<pcl::PointXYZ>);
ne.setSearchMethod(tree);
pcl::PointCloud<pcl::Normal>::Ptr cloud_normals(new pcl::PointCloud<pcl::Normal>);
ne.setKSearch(50);
ne.compute(*cloud_normals);
// Extract road plane using RANSAC
pcl::ModelCoefficients::Ptr coefficients(new pcl::ModelCoefficients);
pcl::PointIndices::Ptr inliers(new pcl::PointIndices);
pcl::SACSegmentationFromNormals<pcl::PointXYZ, pcl::Normal> seg;
seg.setOptimizeCoefficients(true);
seg.setModelType(pcl::SACMODEL_NORMAL_PLANE);
seg.setMethodType(pcl::SAC_RANSAC);
seg.setNormalDistanceWeight(0.1);
seg.setMaxIterations(1000);
seg.setDistanceThreshold(0.05);
seg.setInputCloud(cloud_filtered_outliers);
seg.setInputNormals(cloud_normals);
seg.segment(*inliers, *coefficients);
// Extract road points
pcl::ExtractIndices<pcl::PointXYZ> extract;
extract.setInputCloud(cloud_filtered_outliers);
extract.setIndices(inliers);
pcl::PointCloud<pcl::PointXYZ>::Ptr road_points(new pcl::PointCloud<pcl::PointXYZ>);
extract.filter(*road_points);
// Extract road boundary points
pcl::PointCloud<pcl::PointXYZ>::Ptr road_boundary_points(new pcl::PointCloud<pcl::PointXYZ>);
for (size_t i = 0; i < road_points->size(); ++i)
{
pcl::PointXYZ p = road_points->at(i);
if (p.x < -2.0 || p.x > 2.0 || p.y < -4.0 || p.y > 4.0)
{
road_boundary_points->push_back(p);
}
}
// Extract road lane points
pcl::PointCloud<pcl::PointXYZ>::Ptr road_lane_points(new pcl::PointCloud<pcl::PointXYZ>);
for (size_t i = 0; i < road_points->size(); ++i)
{
pcl::PointXYZ p = road_points->at(i);
if (p.x >= -2.0 && p.x <= 2.0 && p.y >= -4.0 && p.y <= 4.0)
{
road_lane_points->push_back(p);
}
}
// Save output point clouds to PCD files
pcl::io::savePCDFileASCII("road_boundary_points.pcd", *road_boundary_points);
pcl::io::savePCDFileASCII("road_lane_points.pcd", *road_lane_points);
return 0;
}
```
该代码包括以下步骤:
1. 从PCD文件中加载输入点云数据。
2. 使用体素网格过滤器对点云进行下采样。
3. 过滤掉距离过远的点。
4. 使用统计离群值滤波器去除离群点。
5. 估计点云表面法线。
6. 使用RANSAC算法提取道路平面,并得到道路点云。
7. 根据道路点云,提取道路边界点云和车道点云。
8. 将道路边界点云和车道点云保存到PCD文件中。
这个代码示例仅用于演示如何使用pcl库进行道路可行驶区域检测,实际应用中可能需要进行更多的优化和调整。
阅读全文