解释代码:cv2.drawContours(img_array, contours, -1, (0, 0, 255), 3)
时间: 2023-10-06 08:13:30 浏览: 154
这是OpenCV库中的一个函数,用于在图像上绘制轮廓线。cv2.drawContours()函数有五个参数,分别是:
- img_array:需要绘制轮廓线的图像。
- contours:包含轮廓点集的列表。
- contourIdx:轮廓线的索引。-1表示轮廓的所有点都要被绘制。
- color:轮廓线的颜色。
- thickness:轮廓线的粗细。
所以,这行代码的作用是将颜色为红色的轮廓线绘制在img_array图像上,粗细为3个像素。
相关问题
import cv2 import numpy as np def main(): # 1.导入图片 img_src = cv2.imread("cc.jpg") # 2.灰度化,二值化 img_gray = cv2.cvtColor(img_src, cv2.COLOR_BGR2GRAY) ret, img_bin = cv2.threshold(img_gray, 127, 255, cv2.THRESH_BINARY) # 3.连通域分析 img_bin, contours, hierarchy = cv2.findContours(img_bin, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE) # 4.获取最小外接矩形并打印 min_rect = cv2.minAreaRect(contours[0]) print("返回值min_rect:\n", min_rect) rect_points = cv2.boxPoints(min_rect) print("返回值rect_points:\n", rect_points) rect_points = np.int0(rect_points) # 5.绘制最小外接矩形 img_result = img_src.copy() cv2.drawContours(img_result, [rect_points], 0, (255, 255, 255), 2) # 6.显示结果图片 cv2.imshow("img_src", img_src) cv2.imshow("img_result", img_result) cv2.waitKey() cv2.destroyAllWindows() if __name__ == '__main__': main()怎么把图像摆正
要将图像摆正,您可以使用cv2.warpAffine()函数。该函数使用变换矩阵将图像旋转、平移、缩放等转换。以下是一个示例,可以将最小外接矩形旋转到水平方向:
```python
# 计算旋转角度
angle = min_rect[2]
if angle < -45:
angle += 90
# 计算旋转中心
center = tuple(np.array(img_src.shape[1::-1]) / 2)
# 生成变换矩阵
M = cv2.getRotationMatrix2D(center, angle, 1)
# 应用变换矩阵
img_result_rotated = cv2.warpAffine(img_result, M, img_src.shape[1::-1], flags=cv2.INTER_CUBIC)
```
这将生成一个旋转后的图像img_result_rotated。您可以将其保存为图像文件并使用cv2.imshow()函数显示。
def SegMentLWelder(mask_k, mask_box, img_show, contours_info, box, k_class): imgL = cv2.copyTo(mask_k, mask_box) contours_mask_k, _ = cv2.findContours( imgL, cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE) (x, y), radius = cv2.minEnclosingCircle(contours_mask_k[0]) center = [int(x), int(y)] area, trg1 = cv2.minEnclosingTriangle(contours_mask_k[0]) triange_P1 = trg1[0][0] triange_P2 = trg1[1][0] triange_P3 = trg1[2][0] areaL = len(np.where(imgL == 255)[0]) triangle_cnt1 = np.array([triange_P1, center, triange_P2]) mask_triange = np.zeros_like(imgL) mask_triange = cv2.drawContours( mask_triange, [triangle_cnt1.astype(int)], 0, 255, -1) img_triange1 = cv2.copyTo(imgL, mask_triange) triangle_cnt2 = np.array([triange_P2, center, triange_P3]) mask_triange = np.zeros_like(imgL) mask_triange = cv2.drawContours( mask_triange, [triangle_cnt2.astype(int)], 0, 255, -1) img_triange2 = cv2.copyTo(imgL, mask_triange) area1 = len(np.where(img_triange1 == 255)[0]) if area1 < 0.25*areaL or area1 > 0.75*areaL: triangle_cnt1 = np.array([triange_P1, center, triange_P3]) mask_triange = np.zeros_like(imgL) mask_triange = cv2.drawContours( mask_triange, [triangle_cnt1.astype(int)], 0, 255, -1) img_triange1 = cv2.copyTo(imgL, mask_triange) else: area2 = len(np.where(img_triange2 == 255)[0]) if area2 < 0.25*areaL or area2 > 0.75*areaL: triangle_cnt2 = np.array([triange_P1, center, triange_P3]) mask_triange = np.zeros_like(imgL) mask_triange = cv2.drawContours( mask_triange, [triangle_cnt2.astype(int)], 0, 255, -1) img_triange2 = cv2.copyTo(imgL, mask_triange) FindContourSinge(k_class, img_triange1, contours_info, img_show, times=1) FindContourSinge(k_class, img_triange2, contours_info, img_show, times=1)
这是一个 Python 函数,用于在给定的二值图像中寻找一个 L 形区域,并对其进行进一步处理。具体来说,该函数接受以下参数:
1. mask_k:一个二值图像,表示将要寻找的区域的一部分。
2. mask_box:一个二值图像,表示将要寻找的区域的另一部分。
3. img_show:一个彩色图像,用于显示输出结果。
4. contours_info:一个列表,存储从图像中找到的轮廓信息。
5. box:一个四元组,表示将要寻找的区域的外接矩形。
6. k_class:一个整数,表示将要寻找的区域的类别。
函数的主要逻辑是将 mask_k 和 mask_box 相加,得到一个包含 L 形区域的二值图像 imgL。然后,使用 cv2.findContours 函数从 imgL 中找到轮廓 contours_mask_k,使用 cv2.minEnclosingCircle 和 cv2.minEnclosingTriangle 函数分别计算出该轮廓的外接圆和外接三角形。根据外接三角形的顶点和圆心,构造两个包含 L 形区域的三角形,并分别将其绘制到二值图像中。接着,分别计算两个三角形的面积,如果其中一个面积过小或过大,则说明该三角形不是 L 形区域的一部分,需要进行替换。最后,调用 FindContourSinge 函数对两个三角形进行进一步处理,找到其中的轮廓并输出到 img_show 中。
需要注意的是,该函数中的 FindContourSinge 函数并没有给出,因此无法确定该函数的完整逻辑。
阅读全文
相关推荐
![mhtml](https://img-home.csdnimg.cn/images/20250102104920.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)