使用open3d滤除两个pcd点云文件中相同点云的代码
时间: 2023-04-07 07:02:03 浏览: 301
我可以回答这个问题。您可以使用open3d库中的VoxelDownSample函数对点云进行下采样,然后使用open3d库中的PointCloud类的remove_close_points函数来删除相邻的点。具体代码如下:
import open3d as o3d
# 读取点云文件
pcd1 = o3d.io.read_point_cloud("pcd1.pcd")
pcd2 = o3d.io.read_point_cloud("pcd2.pcd")
# 下采样
voxel_size = 0.05
pcd1_down = pcd1.voxel_down_sample(voxel_size=voxel_size)
pcd2_down = pcd2.voxel_down_sample(voxel_size=voxel_size)
# 删除相邻的点
pcd1_down.remove_close_points(voxel_size * 0.5)
pcd2_down.remove_close_points(voxel_size * 0.5)
# 保存处理后的点云文件
o3d.io.write_point_cloud("pcd1_filtered.pcd", pcd1_down)
o3d.io.write_point_cloud("pcd2_filtered.pcd", pcd2_down)
相关问题
写出使用open3d滤除两个pcd点云文件中相同点云的代码
以下是使用open3d滤除两个pcd点云文件中相同点云的代码:
```python
import open3d as o3d
# 读取两个点云文件
pcd1 = o3d.io.read_point_cloud("pcd1.pcd")
pcd2 = o3d.io.read_point_cloud("pcd2.pcd")
# 将两个点云合并
pcd_combined = pcd1 + pcd2
# 去除相同的点云
pcd_combined, _ = pcd_combined.remove_duplicates()
# 分离出两个点云
pcd1_filtered, pcd2_filtered = pcd_combined.voxel_down_sample_and_trace(voxel_size=0.05)
# 保存过滤后的点云
o3d.io.write_point_cloud("pcd1_filtered.pcd", pcd1_filtered)
o3d.io.write_point_cloud("pcd2_filtered.pcd", pcd2_filtered)
```
希望能帮到你!
写出用open3d滤除两个pcd点云文件中相同点云的代码
以下是使用open3d滤除两个pcd点云文件中相同点云的代码:
```python
import open3d as o3d
# 读取两个点云文件
pcd1 = o3d.io.read_point_cloud("pcd1.pcd")
pcd2 = o3d.io.read_point_cloud("pcd2.pcd")
# 将点云文件转换为numpy数组
points1 = pcd1.points
points2 = pcd2.points
# 将numpy数组转换为open3d点云格式
pcd1 = o3d.geometry.PointCloud()
pcd1.points = o3d.utility.Vector3dVector(points1)
pcd2 = o3d.geometry.PointCloud()
pcd2.points = o3d.utility.Vector3dVector(points2)
# 使用open3d的voxel_down_sample方法对点云进行降采样
voxel_size = 0.05
pcd1_down = pcd1.voxel_down_sample(voxel_size=voxel_size)
pcd2_down = pcd2.voxel_down_sample(voxel_size=voxel_size)
# 使用open3d的estimate_normals方法对点云进行法线估计
pcd1_down.estimate_normals(search_param=o3d.geometry.KDTreeSearchParamHybrid(radius=0.1, max_nn=30))
pcd2_down.estimate_normals(search_param=o3d.geometry.KDTreeSearchParamHybrid(radius=0.1, max_nn=30))
# 使用open3d的compute_fpfh_feature方法计算点云的FPFH特征
radius_normal = voxel_size * 2
pcd1_fpfh = o3d.pipelines.registration.compute_fpfh_feature(pcd1_down, o3d.geometry.KDTreeSearchParamHybrid(radius=radius_normal, max_nn=30))
pcd2_fpfh = o3d.pipelines.registration.compute_fpfh_feature(pcd2_down, o3d.geometry.KDTreeSearchParamHybrid(radius=radius_normal, max_nn=30))
# 使用open3d的registration_ransac_based_on_feature_matching方法进行点云配准
distance_threshold = voxel_size * 1.5
result = o3d.pipelines.registration.registration_ransac_based_on_feature_matching(
pcd1_down, pcd2_down, pcd1_fpfh, pcd2_fpfh, distance_threshold,
o3d.pipelines.registration.TransformationEstimationPointToPoint(False), 4, [
o3d.pipelines.registration.CorrespondenceCheckerBasedOnEdgeLength(0.9),
o3d.pipelines.registration.CorrespondenceCheckerBasedOnDistance(distance_threshold)
], o3d.pipelines.registration.RANSACConvergenceCriteria(4000000, 500))
# 使用open3d的apply_4x4_transformation方法将配准后的点云转换为numpy数组
pcd2_transformed = pcd2.transform(result.transformation)
points2_transformed = np.asarray(pcd2_transformed.points)
# 使用numpy的setdiff1d方法计算两个点云的差集
points_diff = np.setdiff1d(points2, points2_transformed, assume_unique=True, axis=0)
# 将差集转换为open3d点云格式并保存为pcd文件
pcd_diff = o3d.geometry.PointCloud()
pcd_diff.points = o3d.utility.Vector3dVector(points_diff)
o3d.io.write_point_cloud("pcd_diff.pcd", pcd_diff)
```
希望能对你有所帮助!
阅读全文