from RL_DQN import DQN, ReplayBuffer
时间: 2024-01-25 18:11:54 浏览: 263
`from RL_DQN import DQN, ReplayBuffer`是从`RL_DQN`模块中导入了`DQN`和`ReplayBuffer`两个类。这个模块可能是一个自定义的强化学习库,其中包含了实现DQN算法所需的类和函数。
`DQN`类可能是用来定义和训练DQN模型的类,它可能包含了神经网络模型的定义、练和预测方法等。
`ReplayBuffer`类可能是用来实现经验回放缓冲区的类,它可能包含了存储和采样经验数据的方法,以及从缓冲区中随机采样数据的方法。
以下是一个示例代码,展示了如何使用`DQN`和`ReplayBuffer`类:
```python
from RL_DQN import DQN, ReplayBuffer
# 创建一个DQN模型
model = DQN()
# 创建一个经验回放缓冲区
buffer = ReplayBuffer()
# 存储经验数据到缓冲区
state = ...
action = ...
reward = ...
next_state = ...
buffer.add_experience(state, action, reward, next_state)
# 从缓冲区中随机采样数据进行训练
batch = buffer.sample_batch(batch_size)
model.train(batch)
```
相关问题
DQN加上人工势场法代码
DQN加上人工势场法是一种基于强化学习和人工势场法的路径规划算法。其中DQN是Deep Q-Network的缩写,是一种深度强化学习算法,可以通过学习最优的策略来解决在环境中的决策问题。而人工势场法是一种基于物理学中力场的概念,将物体在力场中的运动方式应用于路径规划中,以实现避障和寻路等目标。
下面是一个简单的DQN加上人工势场法的Python代码示例:
```
import gym
import numpy as np
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Flatten
from tensorflow.keras.optimizers import Adam
from rl.agents.dqn import DQNAgent
from rl.policy import BoltzmannQPolicy
from rl.memory import SequentialMemory
from robot_env import RobotEnv
env = RobotEnv()
states = env.observation_space.shape
actions = env.action_space.n
model = Sequential()
model.add(Flatten(input_shape=(1, states)))
model.add(Dense(24, activation='relu'))
model.add(Dense(24, activation='relu'))
model.add(Dense(actions, activation='linear'))
memory = SequentialMemory(limit=50000, window_length=1)
policy = BoltzmannQPolicy()
dqn = DQNAgent(model=model, nb_actions=actions, memory=memory, nb_steps_warmup=10,
target_model_update=1e-2, policy=policy)
dqn.compile(Adam(lr=1e-3), metrics=['mae'])
dqn.fit(env, nb_steps=5000, visualize=False, verbose=2)
weights_file = 'dqn_weights.h5f'
dqn.save_weights(weights_file, overwrite=True)
# 人工势场法
def potential_field(observation):
goal_position = np.array([0.5, 0.5])
obstacle_position = np.array([observation, observation])
distance_vector = goal_position - obstacle_position
distance = np.sqrt(np.sum(distance_vector ** 2))
angle = np.arctan2(distance_vector, distance_vector)
x_force = -np.cos(angle) / (distance ** 2)
y_force = -np.sin(angle) / (distance ** 2)
return np.array([x_force, y_force])
def get_action(observation):
action_values = dqn.model.predict(np.array([observation]))
action = np.argmax(action_values)
force = potential_field(observation)
force_magnitude = np.sqrt(np.sum(force ** 2))
if force_magnitude > 0.01:
force /= force_magnitude
action += 4
return action
obs = env.reset()
for i in range(200):
action = get_action(obs)
obs, reward, done, info = env.step(action)
if done:
break
env.close()
```
DQN的Python代码
DQN (Deep Q-Network) 是一种强化学习算法,通过使用深度神经网络来学习 Q 函数来实现对智能体的控制。下面是一个简单的 DQN 的 Python 代码示例:
```
import random
import gym
import numpy as np
from collections import deque
from keras.models import Sequential
from keras.layers import Dense
from keras.optimizers import Adam
class DQNAgent:
def __init__(self, state_size, action_size):
self.state_size = state_size
self.action_size = action_size
self.memory = deque(maxlen=2000)
self.gamma = 0.95 # discount rate
self.epsilon = 1.0 # exploration rate
self.epsilon_min = 0.01
self.epsilon_decay = 0.995
self.learning_rate = 0.001
self.model = self._build_model()
def _build_model(self):
# Neural Net for Deep-Q learning Model
model = Sequential()
model.add(Dense(24, input_dim=self.state_size, activation='relu'))
model.add(Dense(24, activation='relu'))
model.add(Dense(self.action_size, activation='linear'))
model.compile(loss='mse',
optimizer=Adam(lr=self.learning_rate))
return model
def remember(self, state, action, reward, next_state, done):
self.memory.append((state, action, reward, next_state, done))
def act(self, state):
if np.random.rand() <= self.epsilon:
return random.randrange(self.action_size)
act_values = self.model.predict(state)
return np.argmax(act_values[0])
def replay(self, batch_size):
minibatch = random.sample(self.memory, batch_size)
for state, action, reward, next_state, done in minibatch:
target = reward
if not done:
target = reward + self.gamma * \
np.amax(self.model.predict(next_state)[0])
target_f = self.model.predict(state)
target_f[0][action] = target
self.model.fit(state, target_f, epochs=1, verbose=0)
if self.epsilon > self.epsilon_min:
self.epsilon *= self.epsilon_decay
def load(self, name):
self.model.load_weights(name)
def save(self, name):
self.model.save_weights(name)
if
阅读全文