帮我写一个DBN分类代码
时间: 2024-04-30 18:17:11 浏览: 77
好的,下面是一个简单的DBN分类代码:
```python
from sklearn.neural_network import BernoulliRBM
from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import Pipeline
# 准备数据
X_train = ...
y_train = ...
X_test = ...
y_test = ...
# 定义 RBM 和逻辑回归模型
rbm = BernoulliRBM(n_components=100, learning_rate=0.05, n_iter=10)
logistic = LogisticRegression()
# 定义 pipeline
dbn = Pipeline(steps=[('rbm', rbm), ('logistic', logistic)])
# 训练模型
dbn.fit(X_train, y_train)
# 输出测试集上的准确率
print("Accuracy: %.2f" % dbn.score(X_test, y_test))
```
注意,这只是一个示例代码,需要根据具体数据和问题进行调整和修改。
相关问题
帮我写一个DBN加BP的分类代码
### 回答1:
以下是一个简单的DBN加BP的分类代码,供您参考:
```python
import numpy as np
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
# 加载MNIST数据集
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
# 定义DBN模型
class DBN(object):
def __init__(self, n_input, n_hidden1, n_hidden2, n_output):
self.n_input = n_input
self.n_hidden1 = n_hidden1
self.n_hidden2 = n_hidden2
self.n_output = n_output
# 定义网络权重和偏置
self.weights = {
'w1': tf.Variable(tf.random_normal([n_input, n_hidden1])),
'w2': tf.Variable(tf.random_normal([n_hidden1, n_hidden2])),
'w3': tf.Variable(tf.random_normal([n_hidden2, n_output]))
}
self.biases = {
'b1': tf.Variable(tf.random_normal([n_hidden1])),
'b2': tf.Variable(tf.random_normal([n_hidden2])),
'b3': tf.Variable(tf.random_normal([n_output]))
}
# 定义网络输入和输出
self.x = tf.placeholder("float", [None, n_input])
self.y = tf.placeholder("float", [None, n_output])
# 定义网络结构
self.hidden1 = tf.nn.sigmoid(tf.add(tf.matmul(self.x, self.weights['w1']), self.biases['b1']))
self.hidden2 = tf.nn.sigmoid(tf.add(tf.matmul(self.hidden1, self.weights['w2']), self.biases['b2']))
self.output = tf.nn.softmax(tf.add(tf.matmul(self.hidden2, self.weights['w3']), self.biases['b3']))
# 定义损失函数和优化器
self.cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=self.output, labels=self.y))
self.optimizer = tf.train.GradientDescentOptimizer(learning_rate=.01).minimize(self.cost)
# 定义准确率
self.correct_pred = tf.equal(tf.argmax(self.output, 1), tf.argmax(self.y, 1))
self.accuracy = tf.reduce_mean(tf.cast(self.correct_pred, tf.float32))
# 定义训练函数
def train(self, training_epochs, batch_size):
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
# 开始训练
for epoch in range(training_epochs):
avg_cost = .
total_batch = int(mnist.train.num_examples / batch_size)
for i in range(total_batch):
batch_x, batch_y = mnist.train.next_batch(batch_size)
_, c = sess.run([self.optimizer, self.cost], feed_dict={self.x: batch_x, self.y: batch_y})
avg_cost += c / total_batch
if epoch % 10 == :
print("Epoch:", '%04d' % (epoch + 1), "cost=", "{:.9f}".format(avg_cost))
# 计算测试集准确率
print("Accuracy:", self.accuracy.eval({self.x: mnist.test.images, self.y: mnist.test.labels}))
# 定义DBN模型参数
n_input = 784
n_hidden1 = 256
n_hidden2 = 128
n_output = 10
# 创建DBN模型
dbn = DBN(n_input, n_hidden1, n_hidden2, n_output)
# 训练DBN模型
dbn.train(training_epochs=100, batch_size=100)
```
希望对您有所帮助!
### 回答2:
DBN是深度信念网络(Deep Belief Networks)的缩写,BP是反向传播(Backpropagation)的缩写。DBN是一种由多个堆叠的限制玻尔兹曼机(Restricted Boltzmann Machines)组成的神经网络模型,而BP则是一种用于训练神经网络的方法。下面是一个基于DBN和BP的分类代码示例:
```python
import numpy as np
from sklearn.neural_network import BernoulliRBM
from sklearn.neural_network import MLPClassifier
# 定义一个DBN模型,并使用BP算法进行训练
class DBN:
def __init__(self, hidden_layers=[100, 100], rbm_iterations=10, bp_iterations=10):
self.rbm_iterations = rbm_iterations
self.bp_iterations = bp_iterations
self.rbms = []
self.bps = []
for i, hidden_units in enumerate(hidden_layers):
rbm = BernoulliRBM(n_components=hidden_units, n_iter=rbm_iterations)
self.rbms.append(rbm)
if i == 0:
rbm.fit(self.X) # 假设已有训练数据X
X_transformed = rbm.transform(self.X) # 输出经过RBM变换后的数据
else:
rbm.fit(X_transformed)
X_transformed = rbm.transform(X_transformed)
bp = MLPClassifier(hidden_layer_sizes=(hidden_units,), max_iter=bp_iterations)
bp.fit(X_transformed, self.y) # 假设已有分类标签y
self.bps.append(bp)
# 进行预测
def predict(self, X):
X_transformed = X
for rbm, bp in zip(self.rbms, self.bps):
X_transformed = rbm.transform(X_transformed)
y_pred = bp.predict(X_transformed)
return y_pred
# 使用示例
dbn = DBN(hidden_layers=[100, 100], rbm_iterations=10, bp_iterations=10)
dbn.fit(X_train, y_train)
y_pred = dbn.predict(X_test)
```
以上代码定义了一个DBN类,其初始化部分包括了多层限制玻尔兹曼机(RBM)和多层感知机(MLP)分类器的训练过程。在训练过程中,每一层的RBM将训练数据进行变换,作为输入传递给上一层的RBM,最后一层的RBM输出将作为MLP分类器的输入进行训练。最后,使用训练好的模型进行预测时,输入的数据将按照相同的过程进行变换,然后通过MLP分类器输出预测结果。
使用萼蕊花数据集写一段DBN分类代码
以下是使用萼蕊花数据集写的DBN分类代码:
```python
import numpy as np
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.neural_network import BernoulliRBM
from sklearn.pipeline import Pipeline
from sklearn.linear_model import LogisticRegression
# 加载数据集
iris = load_iris()
X, y = iris.data, iris.target
# 数据预处理
scaler = StandardScaler()
X = scaler.fit_transform(X)
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 定义 BernoulliRBM 模型
rbm = BernoulliRBM(n_components=2, learning_rate=0.01, n_iter=100, random_state=42)
# 定义逻辑回归模型
logistic = LogisticRegression(max_iter=1000, random_state=42)
# 定义 Pipeline
model = Pipeline(steps=[('rbm', rbm), ('logistic', logistic)])
# 训练模型
model.fit(X_train, y_train)
# 预测测试集
y_pred = model.predict(X_test)
# 输出准确率
accuracy = np.mean(y_pred == y_test)
print(f"准确率为:{accuracy}")
```
希望这段代码能够帮到你!
阅读全文