pandas vlookup
时间: 2023-08-09 09:10:09 浏览: 95
pandas中没有直接的vlookup函数,但可以使用merge函数实现类似的功能。merge函数可以将两个数据框按照指定的列进行合并,并返回包含匹配结果的新数据框。具体使用方法如下所示:
```pythonimport pandas as pd#读取数据框df_1 = pd.read_excel('A.xls')
df_2 = pd.read_excel('B.xls')
# 合并数据框,根据指定的列进行匹配df = pd.merge(df_1, df_2, left_on='a', right_on='b', how='left')
# 进行筛选,删除未匹配到的行df = df[df['c_y'].notnull()]
# 将结果保存为Excel文件df.to_excel('test3.xlsx', index=False)
```
以上代码会将A表中a列的数据在B表的b列中查找匹配结果,并将匹配到的行合并到新的数据框df中,最后将结果保存为test3.xlsx文件。需要注意的是,使用merge函数进行合并时,需要确保两个数据框中的列名一致,以便进行正确的匹配。
相关问题
pandas Vlookup
Pandas does not have a direct VLOOKUP function like in Excel, but you can achieve similar functionality using merge or join operations. The merge() function in pandas can be used to perform a VLOOKUP-like operation by joining two DataFrame objects based on a common column.
Here's an example of how you can use merge() to achieve the VLOOKUP functionality:
```python
import pandas as pd
# Creating two sample DataFrames
df1 = pd.DataFrame({'A': [1, 2, 3, 4],
'B': ['a', 'b', 'c', 'd']})
df2 = pd.DataFrame({'A': [1, 3],
'C': ['x', 'y']})
# Performing VLOOKUP-like operation
result = pd.merge(df1, df2, on='A', how='left')
print(result)
```
In this example, we have two DataFrames: `df1` and `df2`. We want to perform a VLOOKUP on column A of `df1` using `df2`. After merging, the result DataFrame will include all columns from `df1` and the matching values from `df2` based on the common column 'A'.
Note that the `how` parameter in the merge() function specifies the type of join operation ('left' in this case), just like how VLOOKUP can be performed with different types of matching in Excel.
You can refer to the pandas documentation for more information on merge(): https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.merge.html
pandas实现vlookup
要使用pandas实现类似于VLOOKUP的功能,你可以使用merge函数来合并两个数据框,类似于Excel中的VLOOKUP操作。下面是一个示例代码:
```python
import pandas as pd
# 创建第一个数据框
df1 = pd.DataFrame({'A': [1, 2, 3],
'B': ['a', 'b', 'c']})
# 创建第二个数据框
df2 = pd.DataFrame({'A': [1, 2, 3],
'C': ['x', 'y', 'z']})
# 使用merge函数进行合并
merged = pd.merge(df1, df2, on='A', how='left')
# 输出合并结果
print(merged)
```
这段代码将根据'A'列的值在两个数据框之间进行合并,并将结果存储在`merged`变量中。合并的方式使用`how`参数指定,这里使用了'left'表示左连接,类似于Excel中的VLOOKUP。
运行以上代码会输出以下结果:
```
A B C
0 1 a x
1 2 b y
2 3 c z
```
这样,你就通过pandas实现了类似于VLOOKUP的功能。你可以根据自己的需求调整数据框和合并方式。
阅读全文