分位数回归kernel

时间: 2023-10-15 19:03:26 浏览: 217
分位数回归(Quantile Regression)是一种回归分析方法,它旨在通过考虑不同分位数的条件分布来捕捉因变量与自变量之间的非线性关系。分位数回归kernel是一种非参数估计方法,用于估计分位数回归函数。 分位数回归kernel的基本思想是通过在每个数据点周围放置一个核函数,来估计每个分位数的回归函数。核函数通常是高斯核函数或Epanechnikov核函数等非负、对称、积分和为1的函数。然后,通过加权最小二乘法来估计每个分位数下的回归系数。 分位数回归kernel具有以下优点: 1. 非参数估计方法,不需要对数据分布进行假设或转换; 2. 可以捕捉因变量与自变量之间的非线性关系; 3. 可以估计不同分位数下的回归系数,提供更全面的信息。 但是,分位数回归kernel也有一些缺点: 1. 对于大规模数据集,计算成本较高; 2. 噪声数据会影响估计结果; 3. 对于分位数之间的跳跃性变化,估计结果可能不够平滑。 总之,分位数回归kernel在捕捉因变量与自变量之间的非线性关系方面具有优势,但需要注意计算成本和噪声数据的影响。
相关问题

半参数空间分位数回归 stata代码

半参数空间分位数回归是一种统计方法,它结合了线性模型和非参数估计的优点,特别适用于处理存在异方差性和自相关性的数据。这种方法假设残差是非参数分布的,并通过空间依赖结构来捕捉数据中的区域效应。 在Stata中,你可以使用`rq`命令来进行半参数空间分位数回归分析。以下是基本步骤: 1. **加载数据**: ```stata use your_dataset, clear ``` 2. **检查变量**: 确保你有一个响应变量和一些解释变量(自变量),以及地理空间变量(如邮政编码、区县等)。 3. **进行半参数空间分位数回归**: ``` rq dependent_variable ~ independent_variables | spatial_variable, options ``` `dependent_variable`是你想预测的变量,`independent_variables`是你的解释变量,`spatial_variable`是空间坐标变量。`options`可以包含像`kernel()`用于指定核函数、`bandwidth()`设置带宽值等选项。 4. **查看结果**: ``` summary ``` 这将显示回归结果及其统计信息。 5. **图形展示**: 可能需要使用`graph`命令来可视化回归曲线和其他图示。

深度残差网络和分位数回归结合起来的区间预测代码

这里是一个基于深度残差网络和分位数回归结合的区间预测代码。请注意,这只是一个示例代码,具体实现可能因数据集和模型结构而异。 ```python import numpy as np import tensorflow as tf from tensorflow.keras.layers import Input, Dense, Dropout, Flatten, Conv1D, Add, Lambda from tensorflow.keras.models import Model from tensorflow.keras.optimizers import Adam # 构建深度残差网络 def resnet_block(x, filters, kernel_size, activation='relu', dropout_rate=0.2): # 残差路径 res = Conv1D(filters=filters, kernel_size=kernel_size, padding='same')(x) res = Dropout(dropout_rate)(res) res = Conv1D(filters=filters, kernel_size=kernel_size, padding='same')(res) # 主路径 x = Conv1D(filters=filters, kernel_size=kernel_size, padding='same')(x) x = Dropout(dropout_rate)(x) x = Conv1D(filters=filters, kernel_size=kernel_size, padding='same')(x) # 合并残差路径和主路径 x = Add()([res, x]) x = Activation(activation)(x) return x def build_resnet(input_shape, output_shape, filters, kernel_size, activation='relu', dropout_rate=0.2): # 输入层 inputs = Input(shape=input_shape) # 残差块 x = resnet_block(inputs, filters, kernel_size, activation, dropout_rate) x = resnet_block(x, filters, kernel_size, activation, dropout_rate) x = resnet_block(x, filters, kernel_size, activation, dropout_rate) # 输出层 outputs = Dense(output_shape, activation='linear')(x) # 模型 model = Model(inputs=inputs, outputs=outputs) return model # 构建分位数回归模型 def build_quantile_loss(q): def quantile_loss(y_true, y_pred): error = y_true - y_pred return tf.keras.backend.mean(tf.keras.backend.maximum(q * error, (q - 1) * error), axis=-1) return quantile_loss def build_quantile_model(input_shape, output_shape, filters, kernel_size, activation='relu', dropout_rate=0.2, quantiles=[0.1, 0.5, 0.9]): # 初始化模型列表 models = [] # 构建多个分位数回归模型 for q in quantiles: model = build_resnet(input_shape, output_shape, filters, kernel_size, activation, dropout_rate) model.compile(loss=build_quantile_loss(q), optimizer=Adam()) models.append(model) return models # 训练模型 def train_model(X_train, y_train, models, batch_size=32, epochs=100): # 训练每个分位数回归模型 for model in models: model.fit(X_train, y_train, batch_size=batch_size, epochs=epochs, validation_split=0.1, shuffle=True) # 预测分位数 def predict_quantiles(X_test, models): # 预测每个分位数 y_preds = [] for model in models: y_preds.append(model.predict(X_test)) # 整理预测结果 y_preds = np.array(y_preds) y_preds = np.transpose(y_preds, (1, 2, 0)) return y_preds # 构建区间预测模型 def build_interval_model(input_shape, output_shape, filters, kernel_size, activation='relu', dropout_rate=0.2, quantiles=[0.1, 0.5, 0.9]): # 构建多个分位数回归模型 models = build_quantile_model(input_shape, output_shape, filters, kernel_size, activation, dropout_rate, quantiles) # 输入层 inputs = Input(shape=input_shape) # 预测分位数 preds = predict_quantiles(inputs, models) # 计算区间 lower = Lambda(lambda x: x[:, :, 0])(preds) upper = Lambda(lambda x: x[:, :, -1])(preds) # 输出层 outputs = tf.stack([lower, upper], axis=-1) # 模型 model = Model(inputs=inputs, outputs=outputs) return model ``` 在这个代码中,`build_resnet`函数构建了一个深度残差网络模型,`build_quantile_model`函数构建了多个分位数回归模型,`train_model`函数用于训练模型,`predict_quantiles`函数用于预测分位数,`build_interval_model`函数将分位数回归模型和区间预测模型结合起来,构建了一个完整的区间预测模型。
阅读全文

相关推荐

zip

最新推荐

recommend-type

python多维数组分位数的求取方式

在Python的科学计算库NumPy中,计算多维数组的分位数是一项常见的任务,尤其在处理统计分析和数据预处理时。`numpy.percentile()`函数是实现这一目标的关键工具。该函数允许用户轻松地计算数组中任意百分比的分位数...
recommend-type

单项海洋环境影响评价等级表.docx

单项海洋环境影响评价等级表.docx
recommend-type

基于AT89C51 单片机为核心器件,程序设计采用C 语言,Keil 软件编译程序,配以相关外围接口电路,实现了方波、锯齿波、正弦波、三角波、梯形波五种特定波形的产生【论文+源码】

【作品名称】:基于AT89C51 单片机为核心器件,程序设计采用C 语言,Keil 软件编译程序,配以相关外围接口电路,实现了方波、锯齿波、正弦波、三角波、梯形波五种特定波形的产生【论文+源码】 【适用人群】:适用于希望学习不同技术领域的小白或进阶学习者。可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【项目介绍】:本设计中的波形发生器系统要求基于51单片机,因此选用以AT89C51单片机作为整个系统的控制核心,应用其强大的接口功能,构成整个波形发生器的硬件系统。使用C 语言对单片机编程可产生相应的正弦波,方波,三角波,锯齿波梯形波波形信号。在程序运行时,当接收到按键信息后,需要输出某种波形时,调用相应的中断服务子程序和波形发生程序,经电路的数/模转换器和运算放大器处理后,从信号发生器的输出端口输出即可得到要求的波形。 当需要改变频率时只需要改变单片机的波形发生程序中的递增或者递减变量即可。 【资源声明】:本资源作为“参考资料”而不是“定制需求”,代码只能作为参考,不能完全复制照搬。需要有一定的基础看懂代码,自行调试代码并解决报错,能自行添加功能修改代码。
recommend-type

数学建模培训资料 数学建模实战题目真题答案解析解题过程&论文报告 完全多元图的最大匹配问题研究 共9页.pdf

数学建模培训资料 数学建模实战题目真题答案解析解题过程&论文报告 完全多元图的最大匹配问题研究 共9页.pdf
recommend-type

俄罗斯RTSD数据集实现交通标志实时检测

资源摘要信息:"实时交通标志检测" 在当今社会,随着道路网络的不断扩展和汽车数量的急剧增加,交通标志的正确识别对于驾驶安全具有极其重要的意义。为了提升自动驾驶汽车或辅助驾驶系统的性能,研究者们开发了各种算法来实现实时交通标志检测。本文将详细介绍一项关于实时交通标志检测的研究工作及其相关技术和应用。 ### 俄罗斯交通标志数据集(RTSD) 俄罗斯交通标志数据集(RTSD)是专门为训练和测试交通标志识别算法而设计的数据集。数据集内容丰富,包含了大量的带标记帧、交通符号类别、实际的物理交通标志以及符号图像。具体来看,数据集提供了以下重要信息: - 179138个带标记的帧:这些帧来源于实际的道路视频,每个帧中可能包含一个或多个交通标志,每个标志都经过了精确的标注和分类。 - 156个符号类别:涵盖了俄罗斯境内常用的各种交通标志,每个类别都有对应的图像样本。 - 15630个物理符号:这些是实际存在的交通标志实物,用于训练和验证算法的准确性。 - 104358个符号图像:这是一系列经过人工标记的交通标志图片,可以用于机器学习模型的训练。 ### 实时交通标志检测模型 在该领域中,深度学习模型尤其是卷积神经网络(CNN)已经成为实现交通标志检测的关键技术。在描述中提到了使用了yolo4-tiny模型。YOLO(You Only Look Once)是一种流行的实时目标检测系统,YOLO4-tiny是YOLO系列的一个轻量级版本,它在保持较高准确率的同时大幅度减少计算资源的需求,适合在嵌入式设备或具有计算能力限制的环境中使用。 ### YOLO4-tiny模型的特性和优势 - **实时性**:YOLO模型能够实时检测图像中的对象,处理速度远超传统的目标检测算法。 - **准确性**:尽管是轻量级模型,YOLO4-tiny在多数情况下仍能保持较高的检测准确性。 - **易集成**:适用于各种应用,包括移动设备和嵌入式系统,易于集成到不同的项目中。 - **可扩展性**:模型可以针对特定的应用场景进行微调,提高特定类别目标的检测精度。 ### 应用场景 实时交通标志检测技术的应用范围非常广泛,包括但不限于: - 自动驾驶汽车:在自动驾驶系统中,能够实时准确地识别交通标志是保证行车安全的基础。 - 智能交通系统:交通标志的实时检测可以用于交通流量监控、违规检测等。 - 辅助驾驶系统:在辅助驾驶系统中,交通标志的自动检测可以帮助驾驶员更好地遵守交通规则,提升行驶安全。 - 车辆导航系统:通过实时识别交通标志,导航系统可以提供更加精确的路线规划和预警服务。 ### 关键技术点 - **图像处理技术**:包括图像采集、预处理、增强等步骤,为后续的识别模型提供高质量的输入。 - **深度学习技术**:利用深度学习尤其是卷积神经网络(CNN)进行特征提取和模式识别。 - **数据集构建**:构建大规模、多样化的高质量数据集对于训练准确的模型至关重要。 ### 结论 本文介绍的俄罗斯交通标志数据集以及使用YOLO4-tiny模型进行实时交通标志检测的研究工作,显示了在该领域应用最新技术的可能性。随着计算机视觉技术的不断进步,实时交通标志检测算法将变得更加准确和高效,进一步推动自动驾驶和智能交通的发展。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

预测区间与置信区间:机器学习中的差异与联系

# 1. 机器学习中的统计基础 在当今数据驱动的时代,机器学习已经成为了理解大数据的关键途径。在这一章节中,我们将探索机器学习与统计学之间密不可分的关系,重点介绍统计学在机器学习中的核心地位及其应用。我们将从最基本的统计概念入手,为读者建立起机器学习中的统计基础。 ## 1.1 统计学的核心概念 统计学为我们提供了一套强大的工具,用以描述、分析以及从数据中得出结论。核心概念包括均值、方差、标准差等描述性统计指标,它们是理解数据集基本特征的关键。 ## 1.2 统计推断基础 统计推断是建立在概率论基础上的,允许我们在有限的数据样本上做出关于整体的结论。我们将解释置信区间和假设检验等基本概念
recommend-type

基于KNN通过摄像头实现0-9的识别python代码

基于KNN(K-Nearest Neighbors,最近邻算法)实现摄像头实时抓取图像并识别0-9数字的Python代码需要几个步骤,包括数据预处理、训练模型和实际应用。这里是一个简化版本的示例: ```python # 导入必要的库 import cv2 from sklearn.neighbors import KNeighborsClassifier import numpy as np # 数据预处理:假设你已经有一个包含手写数字的训练集 # 这里只是一个简化的例子,实际情况下你需要一个完整的图像数据集 # X_train (特征矩阵) 和 y_train (标签) X_train
recommend-type

易语言开发的文件批量改名工具使用Ex_Dui美化界面

资源摘要信息:"文件批量改名工具-易语言"是一个专门用于批量修改文件名的软件工具,它采用的编程语言是“易语言”,该语言是为中文用户设计的,其特点是使用中文作为编程关键字,使得中文用户能够更加容易地编写程序代码。该工具在用户界面上使用了Ex_Dui库进行美化,Ex_Dui是一个基于易语言开发的UI界面库,能够让开发的应用程序界面更美观、更具有现代感,增加了用户体验的舒适度。 【易语言知识点】: 易语言是一种简单易学的编程语言,特别适合没有编程基础的初学者。它采用了全中文的关键字和语法结构,支持面向对象的编程方式。易语言支持Windows平台的应用开发,并且可以轻松调用Windows API,实现复杂的功能。易语言的开发环境提供了丰富的组件和模块,使得开发各种应用程序变得更加高效。 【Ex_Dui知识点】: Ex_Dui是一个专为易语言设计的UI(用户界面)库,它为易语言开发的应用程序提供了大量的预制控件和风格,允许开发者快速地制作出外观漂亮、操作流畅的界面。使用Ex_Dui库可以避免编写繁琐的界面绘制代码,提高开发效率,同时使得最终的软件产品能够更加吸引用户。 【开源大赛知识点】: 2019开源大赛(第四届)是指在2019年举行的第四届开源软件开发竞赛活动。这类活动通常由开源社区或相关组织举办,旨在鼓励开发者贡献开源项目,推广开源文化和技术交流,提高软件开发的透明度和协作性。参与开源大赛的作品往往需要遵循开放源代码的许可协议,允许其他开发者自由使用、修改和分发代码。 【压缩包子文件的文件名称列表知识点】: 文件名称列表中包含了几个关键文件: - libexdui.dll:这显然是一个动态链接库文件,即DLL文件,它是由Ex_Dui库提供的,用于提供程序运行时所需的库函数和资源。DLL文件可以让程序调用相应的函数,实现特定的功能。 - 文件批量改名工具.e:这可能是易语言编写的主程序文件,带有.e扩展名,表明它是一个易语言源代码文件。 - Default.ext:这个文件名没有给出具体扩展名,可能是一个配置文件或默认设置文件,用户可以通过修改它来自定义软件的行为。 - Source:这可能是一个包含易语言源代码的目录,里面应该包含了文件批量改名工具的源代码,供开发者阅读和学习。 - Res:这个目录通常用于存放资源文件,如图形、声音等。在易语言项目中,Res目录下可能存放了程序运行所需的各种资源文件。 通过对标题、描述、标签以及文件名列表的分析,我们可以了解到这款文件批量改名工具采用了易语言编程,并且界面通过Ex_Dui库进行美化。它可能被提交到了2019年第四届开源大赛中,是开发者为用户提供的一个实用工具,用于提高处理文件时的效率。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依