import numpy as np def LU_decomposition(A): n = len(A) L = np.eye(n) U = A.copy() for i in range(n-1): for j in range(i+1, n): L[j, i] = U[j, i] / U[i, i] U[j, i:] -= L[j, i] * U[i, i:] return L, U def forward_substitution(L, b): n = len(b) y = np.zeros(n) for i in range(n): y[i] = b[i] - np.dot(L[i, :i], y[:i]) y[i] /= L[i, i] return y def back_substitution(U, y): n = len(y) x = np.zeros(n) for i in range(n-1, -1, -1): x[i] = y[i] - np.dot(U[i, i+1:], x[i+1:]) x[i] /= U[i, i] return x def inv(A): n = len(x) A_inv=np.zeros((n, n)) for i in range(n): # 将b中第i个元素设为1,其他元素设为0 bi = np.zeros((n, 1)) bi[i, 0] = 1 # 求解线性方程组Ax=bi,得到A_inv的第i列 ABi = np.hstack((A, bi)) for j in range(n): # 如果A[i, i]为0,则需要进行行交换 if ABi[j, j] == 0: for k in range(j+1, n): if ABi[k, j] != 0: ABi[[j, k]] = ABi[[k, j]] # 将A[i, i]消成1 ABi[j] = ABi[j] / ABi[j, j] # 将A[i, j]消成0(j != i) for k in range(n): if k != j: ABi[k] = ABi[k] - ABi[k, j] * ABi[j] A_inv[:, i] = ABi修改这段代码
时间: 2024-02-25 19:53:51 浏览: 165
这段代码实现了矩阵的逆运算。根据这段代码的逻辑,需要在函数`inv`中获取矩阵`A`的长度,因此需要先定义`n`并赋值为`len(A)`。
同时,由于这段代码使用了变量`x`,因此需要确认`x`的定义和作用域是否正确。如果`x`是在其他函数中定义的,可以将其作为参数传递给函数`inv`。如果`x`是在当前作用域中定义的,则需要在函数`inv`之前定义并初始化`x`。
总之,要修改这段代码,需要先定义`n`并赋值为`len(A)`,然后根据需要进行相应的更改。以下是修改后的代码示例:
```python
import numpy as np
def LU_decomposition(A):
n = len(A)
L = np.eye(n)
U = A.copy()
for i in range(n-1):
for j in range(i+1, n):
L[j, i] = U[j, i] / U[i, i]
U[j, i:] -= L[j, i] * U[i, i:]
return L, U
def forward_substitution(L, b):
n = len(b)
y = np.zeros(n)
for i in range(n):
y[i] = b[i] - np.dot(L[i, :i], y[:i])
y[i] /= L[i, i]
return y
def back_substitution(U, y):
n = len(y)
x = np.zeros(n)
for i in range(n-1, -1, -1):
x[i] = y[i] - np.dot(U[i, i+1:], x[i+1:])
x[i] /= U[i, i]
return x
def inv(A):
n = len(A)
x = np.zeros(n)
A_inv=np.zeros((n, n))
for i in range(n):
# 将b中第i个元素设为1,其他元素设为0
bi = np.zeros((n, 1))
bi[i, 0] = 1
# 求解线性方程组Ax=bi,得到A_inv的第i列
ABi = np.hstack((A, bi))
for j in range(n):
# 如果A[i, i]为0,则需要进行行交换
if ABi[j, j] == 0:
for k in range(j+1, n):
if ABi[k, j] != 0:
ABi[[j, k]] = ABi[[k, j]]
# 将A[i, i]消成1
ABi[j] = ABi[j] / ABi[j, j]
# 将A[i, j]消成0(j != i)
for k in range(n):
if k != j:
ABi[k] = ABi[k] - ABi[k, j] * ABi[j]
A_inv[:, i] = ABi[:, -1]
return A_inv
```
阅读全文