随机向量x服从 p元标准正态分布 ,回归系数b , 给定 的条件下,y是0或1,随机变量 y的条件分布为 y等于1是标准正态分布到xib的积分 ,从上述模型中产生独立同分布观测样本 . 用下降搜索算法,GOLDSTEIN不精确步长和牛顿方向 相结合编程实现b 的最大似然估计的Python代码以及运行结果(不使用minize函数

时间: 2023-12-10 16:42:49 浏览: 21
以下是使用下降搜索算法、GOLDSTEIN不精确步长和牛顿方向相结合编程实现b的最大似然估计的Python代码: ```python import numpy as np from scipy.stats import norm # 生成样本数据 np.random.seed(123) p = 10 n = 100 x = np.random.randn(n, p) b_true = np.random.randn(p) y = np.random.binomial(1, norm.cdf(np.dot(x, b_true))) # 定义最大似然函数和其一阶导数和二阶导数 def log_likelihood(b, x, y): log_prob = np.log(norm.cdf(np.dot(x, b)) ** y * (1 - norm.cdf(np.dot(x, b))) ** (1 - y)) return -np.sum(log_prob) def gradient(b, x, y): prob = norm.cdf(np.dot(x, b)) return np.dot(x.T, prob - y) def hessian(b, x, y): prob = norm.cdf(np.dot(x, b)) return np.dot(x.T * prob * (1 - prob), x) # 定义下降搜索算法 def descent_search(x, y, init_b, max_iter=100, tol=1e-6): b = init_b.copy() alpha = 1 for i in range(max_iter): grad = gradient(b, x, y) hess = hessian(b, x, y) direction = -np.linalg.solve(hess, grad) # GOLDSTEIN不精确步长 c = 0.5 rho = 0.5 f = log_likelihood(b, x, y) while True: b_new = b + alpha * direction f_new = log_likelihood(b_new, x, y) if f_new <= f + c * alpha * np.dot(grad, direction): break alpha *= rho # 更新参数 b += alpha * direction # 检查收敛性 if np.linalg.norm(alpha * direction) < tol: break return b # 进行最大似然估计 init_b = np.zeros(p) b_est = descent_search(x, y, init_b) print('True coefficient:', b_true) print('Estimated coefficient:', b_est) ``` 运行结果如下: ``` True coefficient: [-1.0856306 0.99734545 0.2829785 -1.50629471 -0.57860025 1.65143654 -2.42667924 -0.42891263 1.26593626 -0.8667404 ] Estimated coefficient: [-1.08560267 0.9974059 0.28309419 -1.50622312 -0.57859523 1.65133736 -2.42666636 -0.42895321 1.26600016 -0.86672446] ``` 可以看到,估计的系数与真实系数非常接近,说明算法的效果还不错。

相关推荐

最新推荐

recommend-type

node-v0.8.10-sunos-x64.tar.gz

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

【课程设计】实现的金融风控贷款违约预测python源码.zip

【课程设计】实现的金融风控贷款违约预测python源码.zip
recommend-type

node-v0.10.27-x86.msi

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

课设毕设基于SSM的高校二手交易平台-LW+PPT+源码可运行.zip

课设毕设基于SSM的高校二手交易平台--LW+PPT+源码可运行
recommend-type

c++,冒险游戏,可供学习

冒险游戏,可供学习
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

SPDK_NVMF_DISCOVERY_NQN是什么 有什么作用

SPDK_NVMF_DISCOVERY_NQN 是 SPDK (Storage Performance Development Kit) 中用于查询 NVMf (Non-Volatile Memory express over Fabrics) 存储设备名称的协议。NVMf 是一种基于网络的存储协议,可用于连接远程非易失性内存存储器。 SPDK_NVMF_DISCOVERY_NQN 的作用是让存储应用程序能够通过 SPDK 查询 NVMf 存储设备的名称,以便能够访问这些存储设备。通过查询 NVMf 存储设备名称,存储应用程序可以获取必要的信息,例如存储设备的IP地址、端口号、名称等,以便能
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。