test_dataset = test_dataset.batch(100)
时间: 2023-11-06 19:06:16 浏览: 162
This line of code batches the test dataset into groups of 100 samples. This is useful for evaluating the performance of a machine learning model on the test data, as it allows for efficient processing of large datasets. By batching the data, the model can make predictions on multiple samples at once, which can be more computationally efficient than making predictions on one sample at a time.
相关问题
train_dataset = LegacyPPIDataset(mode='train') valid_dataset = LegacyPPIDataset(mode='valid') test_dataset = LegacyPPIDataset(mode='test') train_dataloader = DataLoader(train_dataset, batch_size=batch_size, collate_fn=collate) valid_dataloader = DataLoader(valid_dataset, batch_size=batch_size, collate_fn=collate) test_dataloader = DataLoader(test_dataset, batch_size=batch_size, collate_fn=collate) n_classes = train_dataset._labels.shape[1] num_feats = train_dataset.features.shape[1]
这段代码是用来加载和处理数据集的。其中`LegacyPPIDataset`是一个自定义的数据集类,用于加载PPID(Protein-Protein Interaction)数据集。`mode`参数指定了数据集的模式,可以是训练集、验证集或测试集。`DataLoader`是一个PyTorch中用于批量处理数据的工具,将数据集分成一批一批的,方便模型训练。`batch_size`参数指定了每个批次的大小。`collate`参数是一个自定义的函数,用于将数据集中的样本转换成模型可以处理的格式。`n_classes`和`num_feats`分别表示类别数和特征数量。这段代码的作用是将数据集加载到内存中,方便模型训练。
train_dataset = ImageFolder(root="./train", transform=transform) train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True) val_dataset = ImageFolder(root="./val", transform=transform) val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False) test_dataset = ImageFolder(root="./test", transform=transform) test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)怎么改写为本地C盘的文件
假设你的训练数据存储在 C 盘的 train 文件夹中,验证数据存储在 C 盘的 val 文件夹中,测试数据存储在 C 盘的 test 文件夹中,可以将代码改写如下:
```
train_dataset = ImageFolder(root="C:/train", transform=transform)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
val_dataset = ImageFolder(root="C:/val", transform=transform)
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False)
test_dataset = ImageFolder(root="C:/test", transform=transform)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
```
需要注意的是,Windows 系统下路径分隔符为反斜杠 `\`,但在 Python 中需要使用正斜杠 `/`,或者使用原始字符串(加上 `r` 前缀)表示路径,以避免转义字符的影响。
阅读全文