帮我编写一个程序,用numpy读取.xlsx数据
时间: 2024-03-17 07:39:51 浏览: 170
当然可以,使用NumPy读取Excel表格中的数据需要使用第三方库pandas,你可以使用pip来安装它,打开你的命令行工具(如cmd或终端),输入以下命令:
```
pip install pandas
```
安装完成后,可以使用以下代码读取Excel表格中的数据:
```python
import pandas as pd
import numpy as np
# 读取Excel文件
data = pd.read_excel('example.xlsx')
# 将数据转换为NumPy数组
arr = np.array(data)
# 打印数组
print(arr)
```
这段代码会打开名为example.xlsx的Excel文件,并将文件中的所有数据转换为NumPy数组。你可以根据自己的需求进行修改。
相关问题
编写一个数据位置为D:/xinpython/BTM/data1.xlsx的Bert文本分类模型。并将最后输出的模型结果导出到D:/xinpython/BTM/topic1.xlsx
以下是一个简单的BERT文本分类示例,包括读取数据、预处理、模型训练和保存结果的过程。
首先,需要安装必要的库和下载预训练的BERT模型:
```python
!pip install pandas xlrd openpyxl torch transformers
!wget -P ./model/ https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased.tar.gz
!tar -xzf ./model/bert-base-uncased.tar.gz -C ./model/
```
接着,读取数据并进行预处理,包括分词、编码和划分训练集和测试集:
```python
import pandas as pd
import torch
from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler
from transformers import BertTokenizer
# 读取数据
df = pd.read_excel('D:/xinpython/BTM/data1.xlsx')
sentences = df['text'].values
labels = df['label'].values
# 加载预训练的BERT模型和分词器
tokenizer = BertTokenizer.from_pretrained('model/bert-base-uncased', do_lower_case=True)
# 对文本进行分词和编码
input_ids = []
attention_masks = []
for sent in sentences:
encoded_dict = tokenizer.encode_plus(sent, add_special_tokens=True, max_length=64, pad_to_max_length=True, return_attention_mask=True, return_tensors='pt')
input_ids.append(encoded_dict['input_ids'])
attention_masks.append(encoded_dict['attention_mask'])
input_ids = torch.cat(input_ids, dim=0)
attention_masks = torch.cat(attention_masks, dim=0)
labels = torch.tensor(labels)
# 划分训练集和测试集
dataset = TensorDataset(input_ids, attention_masks, labels)
train_size = int(0.8 * len(dataset))
test_size = len(dataset) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(dataset, [train_size, test_size])
```
然后,定义BERT分类模型并进行训练:
```python
from transformers import BertForSequenceClassification, AdamW, get_linear_schedule_with_warmup
# 定义模型
model = BertForSequenceClassification.from_pretrained('model/bert-base-uncased', num_labels=2, output_attentions=False, output_hidden_states=False)
# 定义优化器和学习率调度器
optimizer = AdamW(model.parameters(), lr=2e-5, eps=1e-8)
epochs = 4
total_steps = len(train_dataset) * epochs
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=0, num_training_steps=total_steps)
# 定义训练函数
def train(model, dataloader, optimizer, scheduler):
model.train()
for step, batch in enumerate(dataloader):
input_ids = batch[0].to(device)
attention_masks = batch[1].to(device)
labels = batch[2].to(device)
model.zero_grad()
outputs = model(input_ids, token_type_ids=None, attention_mask=attention_masks, labels=labels)
loss = outputs[0]
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
optimizer.step()
scheduler.step()
# 定义测试函数
def evaluate(model, dataloader):
model.eval()
total_accuracy = 0
total_loss = 0
nb_eval_steps = 0
for batch in dataloader:
input_ids = batch[0].to(device)
attention_masks = batch[1].to(device)
labels = batch[2].to(device)
with torch.no_grad():
outputs = model(input_ids, token_type_ids=None, attention_mask=attention_masks, labels=labels)
logits = outputs[1]
total_loss += outputs[0].item()
logits = logits.detach().cpu().numpy()
label_ids = labels.to('cpu').numpy()
total_accuracy += flat_accuracy(logits, label_ids)
nb_eval_steps += 1
avg_accuracy = total_accuracy / nb_eval_steps
avg_loss = total_loss / nb_eval_steps
return avg_accuracy, avg_loss
# 训练模型并保存
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device)
train_dataloader = DataLoader(train_dataset, sampler=RandomSampler(train_dataset), batch_size=32)
test_dataloader = DataLoader(test_dataset, sampler=SequentialSampler(test_dataset), batch_size=32)
for epoch in range(epochs):
train(model, train_dataloader, optimizer, scheduler)
accuracy, loss = evaluate(model, test_dataloader)
print('Epoch {} - Accuracy: {:.2f}% - Loss: {:.4f}'.format(epoch + 1, accuracy * 100, loss))
torch.save(model.state_dict(), 'bert_model.pt')
```
最后,加载保存的模型并对新数据进行分类,将结果导出到Excel文件:
```python
# 加载保存的模型
model = BertForSequenceClassification.from_pretrained('model/bert-base-uncased', num_labels=2, output_attentions=False, output_hidden_states=False)
model.load_state_dict(torch.load('bert_model.pt'))
model.to(device)
# 对新数据进行分类
df = pd.read_excel('D:/xinpython/BTM/topic1.xlsx')
sentences = df['text'].values
input_ids = []
attention_masks = []
for sent in sentences:
encoded_dict = tokenizer.encode_plus(sent, add_special_tokens=True, max_length=64, pad_to_max_length=True, return_attention_mask=True, return_tensors='pt')
input_ids.append(encoded_dict['input_ids'])
attention_masks.append(encoded_dict['attention_mask'])
input_ids = torch.cat(input_ids, dim=0)
attention_masks = torch.cat(attention_masks, dim=0)
dataset = TensorDataset(input_ids, attention_masks)
dataloader = DataLoader(dataset, sampler=SequentialSampler(dataset), batch_size=32)
model.eval()
predictions = []
for batch in dataloader:
input_ids = batch[0].to(device)
attention_masks = batch[1].to(device)
with torch.no_grad():
outputs = model(input_ids, token_type_ids=None, attention_mask=attention_masks)
logits = outputs[0]
logits = logits.detach().cpu().numpy()
predictions.extend(logits.argmax(axis=1))
# 将结果导出到Excel文件
df['label'] = predictions
df.to_excel('D:/xinpython/BTM/topic1.xlsx', index=False)
```
1.读取数据集data.xlsx; 2.利用RFECV进行特征筛选后进行LogisticRegression建模; 绘制训练集和验证集的模型ROC曲线。 Spyder代码
首先,你需要安装一些必要的库,如pandas、numpy、sklearn等。以下是使用Spyder编写Python代码的一个示例:
```python
# 导入所需的库
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split, RFECV
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import roc_curve, auc
import matplotlib.pyplot as plt
# 1. 读取数据集
# 假设data.xlsx位于当前工作目录下
df = pd.read_excel('data.xlsx')
# 检查数据是否存在并查看前几行
print(df.head())
# 2. 特征工程与划分数据集
X = df.drop('target_column', axis=1) # 将'target_column'替换为你的目标列名
y = df['target_column'] # 目标变量
X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, random_state=42)
# 使用RFECV进行特征选择
logreg = LogisticRegression()
selector = RFECV(logreg, cv=5)
selector.fit(X_train, y_train)
X_train_selected = selector.transform(X_train)
X_val_selected = selector.transform(X_val)
# 3. 建立Logistic Regression模型
model = LogisticRegression()
model.fit(X_train_selected, y_train)
# 计算预测值
y_pred_proba = model.predict_proba(X_val_selected)[:, 1]
# 4. 绘制训练集和验证集的ROC曲线
fpr, tpr, _ = roc_curve(y_val, y_pred_proba)
roc_auc = auc(fpr, tpr)
plt.figure(figsize=(8,6))
plt.plot(fpr, tpr, label='ROC curve (area = %0.2f)' % roc_auc)
plt.plot([0, 1], [0, 1], 'k--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver Operating Characteristic (ROC)')
plt.legend(loc="lower right")
plt.show()
```
这里假设`target_column`是你想要预测的目标列名称。记得将代码中的相应部分替换为实际的数据文件路径、列名以及目标列。
阅读全文