全连接神经网络举例,Python代码,Pytorch平台,
时间: 2023-11-19 12:57:46 浏览: 59
好的,以下是一个简单的全连接神经网络代码:
```python
import torch.nn as nn
import torch.nn.functional as F
class NeuralNet(nn.Module):
def __init__(self):
super(NeuralNet, self).__init__()
self.fc1 = nn.Linear(784, 64)
self.fc2 = nn.Linear(64, 10)
def forward(self, x):
x = x.view(-1, 784)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return F.log_softmax(x, dim=1)
model = NeuralNet()
```
这个神经网络有两个全连接层,输入为一个 784 维的向量,输出为一个 10 维的概率分布。使用 relu 作为激活函数,以及 log_softmax 作为输出激活函数。
相关问题
全连接神经网络举例,包括定义网络,训练网络,完整Python代码,Pytorch平台,
好的,我可以回答你的问题。以下是关于全连接神经网络的定义、训练和Python代码:
全连接神经网络是一种基本的神经网络类型,其中每个神经元都与之前和之后的每个神经元都有连接。
定义网络:
```python
import torch.nn as nn
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.fc1 = nn.Linear(784, 512)
self.fc2 = nn.Linear(512, 256)
self.fc3 = nn.Linear(256, 10)
self.relu = nn.ReLU()
self.softmax = nn.Softmax(dim=1)
def forward(self, x):
x = x.view(-1, 784)
x = self.relu(self.fc1(x))
x = self.relu(self.fc2(x))
x = self.softmax(self.fc3(x))
return x
net = Net()
```
这个网络有3个全连接的层和2个非线性的激活函数,也使用了 softmax ,最终输出一个10维的分类标签。这里的输入是一张手写数字图片,输出是一个 10 维的向量,其中每个元素代表了这张图片被分类到每个数字中的概率。
训练网络:
```python
import torchvision.datasets as datasets
import torchvision.transforms as transforms
import torch.optim as optim
train_dataset = datasets.MNIST(root='./data',
train=True,
transform=transforms.ToTensor(),
download=True)
test_dataset = datasets.MNIST(root='./data',
train=False,
transform=transforms.ToTensor(),
download=True)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=100,
shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size=100,
shuffle=False)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.01, momentum=0.9)
for epoch in range(10):
running_loss = 0.0
for i, data in enumerate(train_loader, 0):
inputs, labels = data
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 100 == 99:
print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 100))
running_loss = 0.0
print('Finished Training')
```
在这里,我们使用了 MNIST 数据集进行训练,定义了损失函数和优化器。这里的优化器是随机梯度下降(SGD),指定一个学习率和动量,训练周期为 10 个 epoch。
完整Python代码:
```python
import torch.nn as nn
import torchvision.datasets as datasets
import torchvision.transforms as transforms
import torch.optim as optim
import torch
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.fc1 = nn.Linear(784, 512)
self.fc2 = nn.Linear(512, 256)
self.fc3 = nn.Linear(256, 10)
self.relu = nn.ReLU()
self.softmax = nn.Softmax(dim=1)
def forward(self, x):
x = x.view(-1, 784)
x = self.relu(self.fc1(x))
x = self.relu(self.fc2(x))
x = self.softmax(self.fc3(x))
return x
net = Net()
train_dataset = datasets.MNIST(root='./data',
train=True,
transform=transforms.ToTensor(),
download=True)
test_dataset = datasets.MNIST(root='./data',
train=False,
transform=transforms.ToTensor(),
download=True)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=100,
shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size=100,
shuffle=False)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.01, momentum=0.9)
for epoch in range(10):
running_loss = 0.0
for i, data in enumerate(train_loader, 0):
inputs, labels = data
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 100 == 99:
print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 100))
running_loss = 0.0
print('Finished Training')
```
这是一个完整的 MNIST 数据集的全连接神经网络实现,使用 PyTorch 平台。
小波神经网络预测python代码举例
小波神经网络(Wavelet Neural Network,WNN)是一种结合了小波分析和神经网络技术的模型,常用于信号处理、时间序列预测等领域。以下是使用Python和PyTorch库实现小波神经网络的一个简单示例:
```python
# 首先,需要安装必要的库
import numpy as np
import torch
from torch import nn
from pywt import wavedec, waverec
class WaveletLayer(nn.Module):
def __init__(self, wavelet='db4', level=4):
super(WaveletLayer, self).__init__()
self.wavelet = wavelet
self.level = level
def forward(self, x):
# 使用pywt工具包的小波分解
coeffs = wavedec(x, wavelet=self.wavelet, level=self.level)
return coeffs
class WNN(nn.Module):
def __init__(self, input_size, hidden_layers, output_size):
super(WNN, self).__init__()
# 添加小波层
self.wavelet_layer = WaveletLayer()
# 创建隐藏层
self.hidden_layers = nn.ModuleList([nn.Linear(input_size + len(coeffs), hidden_layers) for coeffs in range(0, len(hidden_layers))])
self.output_layer = nn.Linear(hidden_layers[-1], output_size)
def forward(self, x):
# 分解输入并传递给隐藏层
coeffs = self.wavelet_layer(x)
coefficients = [coeffs]
for layer in self.hidden_layers:
flattened_coeffs = torch.cat((coeffs[0], *coeffs[1:]), dim=-1)
coeffs = [layer(flattened_coeffs)]
# 合成预测
output = self.output_layer(torch.flatten(coeffs[-1], start_dim=1))
return output
# 示例使用
input_size = 100 # 输入数据维度
hidden_layers = [64, 32] # 每个隐藏层的节点数
output_size = 1 # 输出的预测值维度
model = WNN(input_size, hidden_layers, output_size)
# 假设我们有训练数据x_train和对应的标签y_train
# train_loader是一个数据加载器
for x_batch, y_batch in train_loader:
# 预测
pred = model(x_batch)
# 训练模型...
```
注意,这只是一个简化示例,实际应用中还需要配合损失函数、优化器以及训练循环。此外,对于时间序列预测,可能还需处理窗口滑动的问题。
阅读全文