import jiebatext = '这是一段测试文本。它包含多个句子,用于演示如何生成完整的句子词云。'sentences = [sentence.strip() for sentence in text.split('。')]words = []for sentence in sentences: words.extend(jieba.cut(sentence, cut_all=False))result = ' '.join(words)print(result) 结果
时间: 2024-03-19 13:41:30 浏览: 200
这段代码的作用是对给定的中文文本进行分词,并生成词云所需的文本格式。具体来说,它首先使用字符串方法 `split()` 将中文文本按照句号字符 '。' 进行分割,得到一个句子的列表,然后使用 `jieba` 库对每个句子进行分词,得到分词后的词语列表,使用 `extend()` 方法将词语列表添加到 `words` 列表中。最后,使用字符串方法 `join()` 将 `words` 列表中的词语用空格连接起来,得到一个以空格分隔的文本字符串,用于生成词云。
相关问题
#分句分词 import pandas as pd import nltk import re import jieba hu = pd.read_csv('D:\文本挖掘\douban_data.csv',error_bad_lines=False #加入参数 ,encoding = 'gb18030') def cut_sentence(text): # 使用jieba库进行分词 seg_list = jieba.cut(text, cut_all=False) # 根据标点符号进行分句 sentence_list = [] sentence = '' for word in seg_list: sentence += word if word in ['。', '!', '?']: sentence_list.append(sentence) sentence = '' if sentence != '': sentence_list.append(sentence) return sentence_list # 获取需要分词的列 content_series =hu['comment'] # 对某一列进行分句 # sentences = [] # for text in content_series: # sentences.extend(nltk.sent_tokenize(text)) # 对每个元素进行分句 # cut_series = content_series.apply(lambda x: nltk.sent_tokenize(x)) cut_series = content_series.apply(lambda x: cut_sentence(x)) # # 对每个元素进行分词 # cut_series = content_series.apply(lambda x: nltk.word_tokenize(x)) # 将分词后的结果添加到原始的DataFrame中 xxy = pd.concat([comments, cut_series.rename('cut_sentences')], axis=1)
这段代码的作用是将一个包含评论的数据集进行分句和分词处理,并将处理后的结果添加到原始的DataFrame中。具体来说,它首先使用pandas库读取一个csv文件,然后定义了一个cut_sentence函数,使用jieba库进行分词,并根据标点符号进行分句。接着,它将需要分词的列取出,使用apply函数对每个元素进行分句和分词处理,得到一个Series对象。最后,它使用concat函数将原始DataFrame和分词后的Series对象按列合并,并将列名分别命名为comments和cut_sentences。
import jieba excludes = {"将军","却说","荆州","二人","不可","不能","如此"}
Unfortunately, as an AI language model, I am not able to execute such a command. However, I can explain that the command "import jieba" imports the jieba library, which is a Chinese text segmentation library used to split Chinese sentences into individual words. The "excludes" parameter is used to exclude certain words from being segmented, in this case, the words "将军", "却说", "荆州", "二人", "不可", "不能", and "如此".
阅读全文