transformer模型 position
时间: 2023-09-05 17:07:56 浏览: 88
Transformer模型中的位置编码(Positional Encoding)是为了捕捉输入序列中的词语顺序信息而引入的一种技术。在传统的循环神经网络或卷积神经网络中,词语的顺序信息是通过时间步或卷积核的位置进行建模的,但Transformer模型没有显式的顺序信息。为了解决这个问题,Transformer引入了位置编码来为每个词语添加一个表示其位置的向量。
位置编码是通过一个固定的公式计算得到的。对于输入序列中的每个词语,位置编码会为其生成一个唯一的向量表示。这个向量表示会被加到输入嵌入向量上,从而丰富了输入的信息。
在Transformer模型中,常用的位置编码方法是使用正弦和余弦函数来计算位置编码的值。具体来说,对于位置编码矩阵中的每个位置,其对应的位置编码向量的每个维度会根据其相对位置和维度来计算得出。
位置编码的引入使得Transformer模型能够更好地理解输入序列中的顺序信息,从而更好地建模序列之间的关系。
相关问题
大模型 transformer模型
大模型是指具有更多参数的神经网络模型。在自然语言处理领域,Transformer模型是一种显著的大模型,广泛应用于机器翻译、文本生成和语言理解等任务。
Transformer模型是由Google在2017年提出的,它主要包括了自注意力机制(self-attention)和位置编码(position encoding)。相比传统的递归和卷积神经网络,Transformer模型能够并行计算,从而加快了训练和推理的速度。
Transformer模型的核心组件是多层的自注意力机制。自注意力机制能够根据输入序列的不同位置信息,动态地为每个位置分配不同的权重,以便更好地捕捉上下文关系。通过多层堆叠自注意力机制,Transformer模型能够学习到更复杂的语言特征。
由于Transformer模型参数众多,需要大量的训练数据和计算资源进行训练。开发者们通常会利用预训练的Transformer模型,在特定任务上进行微调以获得更好的性能。例如,BERT、GPT和T5等模型都是基于Transformer架构的大模型,在各自领域取得了显著的成果。
transformer模型代码
抱歉,我是语言模型AI,无法提供代码,但是我可以给你提供一个基于PyTorch实现的Transformer模型的代码示例,供你参考:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class MultiheadAttention(nn.Module):
def __init__(self, d_model, num_heads):
super().__init__()
self.num_heads = num_heads
self.d_model = d_model
self.head_size = d_model // num_heads
self.q_linear = nn.Linear(d_model, d_model)
self.v_linear = nn.Linear(d_model, d_model)
self.k_linear = nn.Linear(d_model, d_model)
self.out_linear = nn.Linear(d_model, d_model)
def forward(self, q, k, v, mask):
bs = q.size(0)
# linear transformation
q = self.q_linear(q).view(bs, -1, self.num_heads, self.head_size)
k = self.k_linear(k).view(bs, -1, self.num_heads, self.head_size)
v = self.v_linear(v).view(bs, -1, self.num_heads, self.head_size)
# transpose
q = q.transpose(1,2)
k = k.transpose(1,2)
v = v.transpose(1,2)
# attention
scores = torch.matmul(q, k.transpose(-2, -1)) / torch.sqrt(torch.tensor(self.d_model, dtype=torch.float32))
if mask is not None:
mask = mask.unsqueeze(1).unsqueeze(1)
scores = scores.masked_fill(mask==0, -1e9)
scores = F.softmax(scores, dim=-1)
output = torch.matmul(scores, v)
# concatenate
output = output.transpose(1,2).contiguous().view(bs, -1, self.d_model)
output = self.out_linear(output)
return output
class FeedForward(nn.Module):
def __init__(self, d_model, d_ff):
super().__init__()
self.linear_1 = nn.Linear(d_model, d_ff)
self.linear_2 = nn.Linear(d_ff, d_model)
def forward(self, x):
x = self.linear_1(x)
x = F.relu(x)
x = self.linear_2(x)
return x
class Norm(nn.Module):
def __init__(self, d_model, eps=1e-6):
super().__init__()
self.size = d_model
self.alpha = nn.Parameter(torch.ones(self.size))
self.bias = nn.Parameter(torch.zeros(self.size))
self.eps = eps
def forward(self, x):
norm = self.alpha * (x - x.mean(dim=-1, keepdim=True)) / (x.std(dim=-1, keepdim=True) + self.eps) + self.bias
return norm
class EncoderLayer(nn.Module):
def __init__(self, d_model, num_heads, d_ff):
super().__init__()
self.multihead_attention = MultiheadAttention(d_model, num_heads)
self.feedforward = FeedForward(d_model, d_ff)
self.norm_1 = Norm(d_model)
self.norm_2 = Norm(d_model)
def forward(self, x, mask):
attention = self.multihead_attention(x, x, x, mask)
x = self.norm_1(x + attention)
feedforward = self.feedforward(x)
x = self.norm_2(x + feedforward)
return x
class DecoderLayer(nn.Module):
def __init__(self, d_model, num_heads, d_ff):
super().__init__()
self.masked_multihead_attention = MultiheadAttention(d_model, num_heads)
self.multihead_attention = MultiheadAttention(d_model, num_heads)
self.feedforward = FeedForward(d_model, d_ff)
self.norm_1 = Norm(d_model)
self.norm_2 = Norm(d_model)
self.norm_3 = Norm(d_model)
def forward(self, x, encoder_output, src_mask, tgt_mask):
masked_attention = self.masked_multihead_attention(x, x, x, tgt_mask)
x = self.norm_1(x + masked_attention)
attention = self.multihead_attention(x, encoder_output, encoder_output, src_mask)
x = self.norm_2(x + attention)
feedforward = self.feedforward(x)
x = self.norm_3(x + feedforward)
return x
class PositionalEncoding(nn.Module):
def __init__(self, d_model, dropout, max_len=5000):
super().__init__()
self.dropout = nn.Dropout(p=dropout)
self.d_model = d_model
self.max_len = max_len
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len, dtype=torch.float32).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0)
self.register_buffer('pe', pe)
def forward(self, x):
x = x * math.sqrt(self.d_model)
seq_len = x.size(1)
pe = self.pe[:, :seq_len]
x = x + pe
return self.dropout(x)
class Transformer(nn.Module):
def __init__(self, src_vocab_size, tgt_vocab_size, d_model=512, num_layers=6, num_heads=8, d_ff=2048, dropout=0.1):
super().__init__()
self.src_embedding = nn.Embedding(src_vocab_size, d_model)
self.tgt_embedding = nn.Embedding(tgt_vocab_size, d_model)
self.positional_encoding = PositionalEncoding(d_model, dropout)
self.encoder_layers = nn.ModuleList([EncoderLayer(d_model, num_heads, d_ff) for _ in range(num_layers)])
self.decoder_layers = nn.ModuleList([DecoderLayer(d_model, num_heads, d_ff) for _ in range(num_layers)])
self.generator = nn.Linear(d_model, tgt_vocab_size)
def forward(self, src, tgt, src_mask, tgt_mask):
src_embedded = self.src_embedding(src)
tgt_embedded = self.tgt_embedding(tgt)
src_positional_encoded = self.positional_encoding(src_embedded)
tgt_positional_encoded = self.positional_encoding(tgt_embedded)
# encoder
encoder_output = src_positional_encoded
for encoder_layer in self.encoder_layers:
encoder_output = encoder_layer(encoder_output, src_mask)
# decoder
decoder_output = tgt_positional_encoded
for decoder_layer in self.decoder_layers:
decoder_output = decoder_layer(decoder_output, encoder_output, src_mask, tgt_mask)
# generator
output = self.generator(decoder_output)
return output
```
阅读全文