python写出Jacobi法、G-S法和SOR法的迭代格式(分量形式);
时间: 2024-06-02 13:07:14 浏览: 242
Jacobi迭代格式:
x_i(k+1) = (b_i - SUM(a_ij * x_j(k))) / a_ii
G-S迭代格式:
x_i(k+1) = (b_i - SUM(a_ij * x_j(k+1))) / a_ii
SOR迭代格式:
x_i(k+1) = (1 - w) * x_i(k) + (w/a_ii) * (b_i - SUM(a_ij * x_j(k+1))),其中0 < w < 2为松弛参数。
相关问题
编制 Jacobi 迭代法、Gauss-Seidel 迭代法和超松弛(SOR)迭代法解方程组 Ax=b 的程序
当然可以,这些迭代法通常用于求解线性系统Ax = b,特别是在数值分析和工程计算中。以下是简单的Python示例,演示如何使用Jacobi、Gauss-Seidel和SOR迭代法:
```python
import numpy as np
def jacobi(A, b, iterations, tolerance=1e-6):
n = A.shape[0]
x = np.zeros(n)
delta = np.inf
for _ in range(iterations):
old_delta = delta
x_new = (b - A.dot(x)) / A.diagonal()
delta = np.max(np.abs(x_new - x))
x = x_new
if delta < tolerance:
break
return x_new
def gauss_seidel(A, b, iterations, tolerance=1e-6):
n = A.shape[0]
x = np.zeros(n)
for _ in range(iterations):
for i in range(n):
if i != 0:
x[i] = (b[i] - np.sum(A[i, :i] * x[:i])) / A[i, i]
else:
x[i] = b[i] / A[i, i]
if abs(x[i]) < tolerance:
break
return x
def sor(A, b, omega, iterations, tolerance=1e-6):
n = A.shape[0]
x = np.zeros(n)
delta = np.inf
for _ in range(iterations):
x_new = (omega * (x + A @ x) + (1 - omega) * b) / (omega * A.diagonal() + (1 - omega))
delta = np.max(np.abs(x_new - x))
x = x_new
if delta < tolerance:
break
return x_new
# 示例用法
A = np.array([[4, -1], [-1, 5]])
b = np.array([7, 9])
iterations = 100
jacobi_sol = jacobi(A, b, iterations)
gauss_seidel_sol = gauss_seidel(A, b, iterations)
sor_sol = sor(A, b, 1.5, iterations)
print(f"Jacobi 方法结果:{jacobi_sol}")
print(f"Gauss-Seidel 方法结果:{gauss_seidel_sol}")
print(f"SOR 方法结果(ω=1.5):{sor_sol}")
编制 Jacobi 迭代法、 Gauss-Seidel 迭代法和超松弛(SOR)迭代法解方程组 Ax=b 的程序
Jacobi 迭代法、Gauss-Seidel 迭代法和SOR(Successive Over-Relaxation)迭代法都是数值线性代数中用于求解矩阵方程 \(Ax = b\) 的迭代算法,它们通常应用于大型稀疏系统,因为直接求解往往效率低下。
以下是简化的 Python 示例,使用 NumPy 库来演示这些方法:
```python
import numpy as np
def jacobi(A, b, tolerance=1e-6, max_iterations=100):
n = len(b)
x = np.zeros(n)
D = np.diagflat(A.diagonal())
L = D - A
U = D + A.T
for _ in range(max_iterations):
old_x = x.copy()
x = (b / D).T + (L @ x)
if np.allclose(x, old_x, atol=tolerance):
break
return x
def gauss_seidel(A, b, tolerance=1e-6, max_iterations=100):
n = len(b)
x = np.zeros(n)
for _ in range(max_iterations):
for i in range(n):
sum_row = sum(A[i, :i] * x[:i])
sum_col = sum(A[i, i+1:] * x[i+1:])
x[i] = (b[i] - sum_row - sum_col) / A[i, i]
if np.allclose(x, x_old, atol=tolerance):
break
return x
def sor(A, b, omega=1.5, tolerance=1e-6, max_iterations=100):
n = len(b)
x = np.zeros(n)
D = np.diagflat(A.diagonal())
L = omega * (D - A)
U = (1 - omega) * (D + A.T)
for _ in range(max_iterations):
old_x = x.copy()
x = ((omega * b) + (U @ x)) / (omega * D + U.sum(axis=0))
if np.allclose(x, old_x, atol=tolerance):
break
return x
# 示例用法
A = np.array([[4, 1], [1, 3]])
b = np.array([7, 11])
solution_jacobi = jacobi(A, b)
solution_gauss_seidel = gauss_seidel(A, b)
solution_sor = sor(A, b)
print(f"Jacobi method solution: {solution_jacobi}")
print(f"Gauss-Seidel method solution: {solution_gauss_seidel}")
print(f"SOR method solution: {solution_sor}")
```
在这个例子中,我们首先创建了矩阵 A 和向量 b,然后分别计算三种方法的解。`max_iterations` 和 `tolerance` 参数可以用来控制迭代次数和收敛精度。每个方法内部都包含了一个循环,在满足停止条件(通常是相邻迭代步长足够小)时跳出循环。
阅读全文