depth_map = cv2.normalize(src=depth, dst=None, alpha=0, beta=255, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_8UC1)
时间: 2023-10-15 08:07:47 浏览: 148
这段代码使用了OpenCV库中的normalize函数。它将输入的深度图像depth归一化为0-255的值,并将结果存储在depth_map变量中。其中,alpha和beta参数用于指定输出范围,norm_type参数用于指定规范化类型,dtype参数用于指定输出数据类型。在这里,我们使用了NORM_MINMAX规范化类型,将深度图像归一化到0-255的范围,并将输出类型设置为CV_8UC1,即8位无符号整数类型。
相关问题
import torch from torch import nn class BaseColor(nn.Module): def __init__(self): super(BaseColor, self).__init__() self.l_cent = 50. self.l_norm = 100. self.ab_norm = 110. def normalize_l(self, in_l): return (in_l-self.l_cent)/self.l_norm def unnormalize_l(self, in_l): return in_l*self.l_norm + self.l_cent def normalize_ab(self, in_ab): return in_ab/self.ab_norm def unnormalize_ab(self, in_ab): return in_ab*self.ab_norm
这是一个定义了BaseColor类的代码片段,该类继承自nn.Module。在初始化函数__init__()中,定义了三个成员变量:l_cent、l_norm、ab_norm。normalize_l()和unnormalize_l()分别是将输入的亮度值进行归一化和反归一化的函数;normalize_ab()和unnormalize_ab()分别是将输入的色度值进行归一化和反归一化的函数。这些函数都是为了方便对图像进行处理而设计的。
class Trainer(object): def __init__(self, net, per_num=20, start_num=0, end_num=10, save_path="./model/Lwf", epoch=50, lr=0.0005, batch_size=128): self.lr = lr self.epoch = epoch self.batch_size = batch_size self.strat_num = start_num self.end_num = end_num self.class_num = end_num - start_num self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") self.save_path = save_path self.main_net_path = save_path + "/LwF_" + str(start_num) + ".pth" transform_train = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.RandomRotation(10), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ]) transform_test = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ]) trainset = Cifar100Split(start_num=start_num, end_num=end_num, train=True, transform=transform_train) testset = Cifar100Split(start_num=start_num, end_num=end_num, train=False, transform=transform_test) test_all = Cifar100Split(start_num=0, end_num=end_num, train=False, transform=transform_test) self.train_loader = DataLoader(trainset, batch_size=batch_size, shuffle=True, num_workers=0) self.test_loader = DataLoader(testset, batch_size=batch_size, shuffle=False, num_workers=0) self.test_loader_all = DataLoader(test_all, batch_size=batch_size, shuffle=False, num_workers=0)
这段代码是一个PyTorch中的类Trainer的初始化函数。在初始化时,它接受一些参数,包括网络模型net、每个类别的训练样本数per_num、起始类别编号start_num、结束类别编号end_num、保存路径save_path、训练轮数epoch、学习率lr、批量大小batch_size等。此外,该类还定义了一些图像预处理的操作,包括随机裁剪、随机翻转、随机旋转等,并对训练集和测试集进行了划分和加载。该类的作用是训练深度神经网络模型以实现对图像数据的分类任务。
阅读全文