minist数据集划分代码用numpy
时间: 2023-08-16 22:05:27 浏览: 97
好的,下面是使用NumPy库对MNIST数据集进行划分的示例代码:
```python
import numpy as np
# 读取MNIST数据集
train_images = np.load('mnist/train_images.npy')
train_labels = np.load('mnist/train_labels.npy')
test_images = np.load('mnist/test_images.npy')
test_labels = np.load('mnist/test_labels.npy')
# 定义训练集、验证集和测试集的比例
train_ratio = 0.8
val_ratio = 0.1
test_ratio = 0.1
# 计算划分后的样本数量
num_train_samples = int(train_ratio * train_images.shape[0])
num_val_samples = int(val_ratio * train_images.shape[0])
num_test_samples = int(test_ratio * test_images.shape[0])
# 打乱训练集的顺序
indices = np.random.permutation(train_images.shape[0])
train_images = train_images[indices]
train_labels = train_labels[indices]
# 划分训练集、验证集和测试集
train_images_split = train_images[:num_train_samples]
train_labels_split = train_labels[:num_train_samples]
val_images_split = train_images[num_train_samples:num_train_samples+num_val_samples]
val_labels_split = train_labels[num_train_samples:num_train_samples+num_val_samples]
test_images_split = test_images[:num_test_samples]
test_labels_split = test_labels[:num_test_samples]
# 打印每个集合的样本数量
print('训练集样本数量:', train_images_split.shape[0])
print('验证集样本数量:', val_images_split.shape[0])
print('测试集样本数量:', test_images_split.shape[0])
```
在这个示例中,我们首先读取了MNIST数据集,并定义了训练集、验证集和测试集的比例。接着,我们计算了划分后每个集合的样本数量。为了避免训练集和验证集的顺序对模型训练产生影响,我们使用了NumPy库中的random.permutation()函数来打乱训练集的顺序。接着,我们使用NumPy库中的数组切片操作来划分训练集、验证集和测试集,并打印了每个集合的样本数量。
希望这个示例能够帮助到你。
阅读全文